INFECÇÕES POR Ranavirus E Cocos Gram-Positivos EM Girinos E Rãs DE CRIAÇÃO (Rana catesbeiana Shaw, 1802) DO ESTADO DE GOIÁS.

Rolando Alfredo Mazzoni Romero
Orientador: Prof. Dr. Albenones José de Mesquita

GOIÂNIA
2006
INFECÇÕES POR Ranavirus E COCOS GRAM-POSITIVOS EM GIRINOS E RÃS DE CRIAÇÃO (Rana catesbeiana Shaw, 1802) DO ESTADO DE GOIÁS.

Tese apresentada para obtenção do grau de Doutor em Ciência Animal junto à Escola de Veterinária da Universidade Federal de Goiás

Área de Concentração: Sanidade Animal

Orientador: Prof. Dr. Albenones José de Mesquita – CPA, UFG

Comitê de Orientação:
Prof. Dra. Iolanda Aparecida Nunes – CPA, UFG
Prof. Dra. Wilia M. E. D. de Brito – IPTSP, UFG

GOIÂNIA
2006
AGRADECIMENTOS

Para quem veio de outro país e ficou quatro anos desenvolvendo este trabalho é praticamente impossível fazer uma lista de todas as pessoas e instituições que contribuíram para realização do mesmo. A Energia Universal manifestou-se brindando apoio em todas as formas possíveis, desde o trabalho da Taq DNA polimerase até na forma de inúmeras pessoas e Instituições.

Assim sendo, quero expressar meu reconhecimento especial para:

À CAPES, que na celebração do Convênio com a Universidade de la República do Uruguai fez possível a realização deste doutorado.

À Universidade Federal de Goiás, que abriu as portas para a realização deste trabalho.

À Universidade de la República do Uruguai, e especialmente à Facultad de Veterinária, e Instituto de Investigaciones Pesqueras.

À Escola de Veterinária da UFG, e especialmente ao Programa de Pós-graduação em Ciência Animal.

Ao Centro de Pesquisa em Alimentos da Escola de Veterinária que foi minha casa durante este período.

Aos Professores e funcionários, especialmente meu orientador Prof. Dr. Albenones José de Mesquita pelo apoio constante e principalmente pela amizade e sua qualidade humana.

Aos colegas da pós-graduação pelo bom companheirismo, apoio e estimulo recebido.

À minha família pela difícil tarefa de convivência com um pós-graduando.
CAPÍTULO 1 - CONSIDERAÇÕES GERAIS

1 CONSIDERAÇÕES GERAIS

CAPÍTULO 2 - CARACTERIZAÇÃO DE RANAVIRUS ISOLADOS DE GIRINOS DE RÁ TOURO (Rana catesbeiana Shaw, 1802) EM RANÁRIOS COMERCIAIS

RESUMO

ABSTRACT

1 INTRODUÇÃO

2 MATERIAL E MÉTODOS

2.1 Amostras de Vírus

2.2 Isolamento de vírus

2.3 Reação em cadeia da polimerase (PCR)

2.4 Seqüenciamento

3 RESULTADOS

3.1 Isolamento em cultura de células

3.2 Reação em cadeia da polimerase (PCR)

3.3 Seqüenciamento

4 DISCUSSÃO E CONCLUSÕES

REFERÊNCIAS

CAPÍTULO 3 - RANAVÍRUS ASSOCIADOS A MORTANDADE DE GIRINOS (Rana catesbeiana Shaw, 1802) DE CRIAÇÃO INTENSIVA NO BRASIL

RESUMO

ABSTRACT

1 INTRODUÇÃO

2 MATERIAL E MÉTODOS

2.1 Amostragem de girinos

2.2 Análise Microbiológica

2.3 Histopatologia

2.4 Reação em cadeia da polimerase (PCR)

2.5 Microscopia eletrônica de transmissão

2.6 Parasitologia

3 RESULTADOS

3.1 Epizootiologia

3.2 Evidências clínicas

3.3 Necrópsia

3.4 Histopatologia

3.5 Microbiologia

3.6 Reação em cadeia da polimerase (PCR)

3.7 Parasitologia

3.8 Microscopia eletrônica de transmissão

4 DISCUSSÃO E CONCLUSÕES

4.1 Infecção em girinos jovens

4.2 Infecção em girinos na pré-metamorfose

REFERÊNCIAS

CAPÍTULO 4 - QUADROS INFECCIOSOS EM RÃS DE CRIAÇÃO (Rana catesbeiana Shaw, 1802) NA FASE PÓS-METAMÓRFICA EM RANÁRIOS COMERCIAIS

RESUMO

ABSTRACT

1 INTRODUÇÃO

2 MATERIAL E MÉTODOS

2.1 Amostras de Vírus

2.2 Isolamento de vírus

2.3 Reação em cadeia da polimerase (PCR)

2.4 Seqüenciamento

3 RESULTADOS

3.1 Epizootiologia

3.2 Evidências clínicas

3.3 Necrópsia

3.4 Histopatologia

3.5 Microbiologia

3.6 Reação em cadeia da polimerase (PCR)

3.7 Parasitologia

3.8 Microscopia eletrônica de transmissão

4 DISCUSSÃO E CONCLUSÕES

4.1 Infecção em girinos jovens

4.2 Infecção em girinos na pré-metamorfose

REFERÊNCIAS
1 INTRODUÇÃO .. 81
2 MATERIAL E MÉTODOS .. 85
2.1 Amostragem das rãs .. 85
2.2 Microbiologia .. 86
2.3 Histopatologia ... 87
2.4 Reação em cadeia da polimerase (PCR) .. 87
2.5 Microscopia eletrônica de transmissão .. 89
2.6 Proteínas séricas totais ... 89
2.7 Pesquisa do fungo Batrachochytrium dendrobatidis 89
2.8 Reprodução da Doença .. 90
3 RESULTADOS .. 91
3.1 Epizootiología ... 91
3.2 Sinais Clínicos ... 91
3.3 Achados de necropsia ... 94
3.4 Histopatologia .. 95
3.5 Microbiologia .. 99
3.6 Reação em cadeia da polimerase (PCR) .. 99
3.7 Microscopia eletrônica de transmissão .. 99
3.8 SDS page das proteínas séricas totais .. 99
3.9 Pesquisa do fungo Batrachochytrium dendrobatidis 100
3.10 Reprodução da doença .. 100
4 DISCUSSÃO E CONCLUSÕES ... 101
REFERÊNCIAS .. 110

CAPITULO 5 - PROCESSO INFECCIOSO SUPER AGUDO SEMELHANTE
AO CHOQUE ENDOTÓXICO EM RÃS DE CRIAÇÃO (Rana
catesbeiana Shaw, 1802)

RESUMO ... 121
ABSTRACT .. 122

CAPITULO 6 - CONSIDERAÇÕES FINAIS ... 144
RESUMO

A presença de enfermidades tem inviabilizado a produção nos ranários constituindo um dos principais fatores limitantes para o crescimento da atividade. Objetivou-se com o presente estudo determinar o papel dos vírus da Família Iridoviridae gênero Ranavirus nas doenças de importância econômica nos ranários comerciais, visando relacionar sua eventual presença com os quadros clínicos observados. Para tanto, foram realizados estudos envolvendo as fases de girino e de rã, pesquisando os agentes etiológicos, a epizootiologia das doenças, a sintomatologia clínica, a anatomia patológica macroscópica, a histopatologia, a bacteriologia convencional, e a virologia, sendo esta por meio do emprego de técnicas moleculares, cultura de células e a microscopia eletrônica de transmissão. Foi diagnosticada pela primeira vez em rãs de criação do Brasil, uma doença específica que acomete girinos de até 30 dias de idade, determinada por um vírus da Família Iridoviridae, gênero Ranavirus. O quadro, de tipo super agudo, caracterizou-se por surtos de morbidade e mortalidade acima de 90% da população do ranário. Clinicamente foram observados girinos com edemas e ascite, assim como girinos finos ou emaciados. As lesões localizaram-se principalmente no fígado e nos rins, com destruição quase completa do parênquima. Nenhum agente bacteriano pôde ser incriminado na etiologia da enfermidade. Observou-se uma homologia de quase 100% nas regiões seqüenciadas do genoma entre o vírus isolado no Brasil com aquelas do Frog Virus 3, indicando que o agente pode ter sido introduzido no país pelas rãs importadas de América do Norte. Formas clínicas diferentes foram observadas nos girinos no período pré-metamorfose e nas rãs, as que podem ser considerada como “Septicemia estreptocócica secundária” devido à abundante presença de cocos Gram-positivos associados às lesões. A morte foi consequência da septicemia associada ao comprometimento funcional de órgãos vitais como fígado e rins. Foi identificado um quadro super agudo nas rãs, sugerindo, a presença de uma síndrome semelhante ao choque séptico. A síndrome denominada de “perna vermelha” não foi observada em nenhuma das rãs estudadas.

Palavras-chave: Aquicultura, estreptococos, ranicultura, septicemias, ranavírus.
ABSTRACT

Diseases are an important limiting factor for frog farming development. This study was developed to determine the role of virus of the *Iridoviridae* Family, genus *Ranavirus* in economically important diseases affecting farmed frogs, aiming to find relationships among these viruses and the clinical syndromes observed. Studies had been carried out with frogs and tadpoles searching for etiological agents, the epizootiology of the diseases, clinical symptoms, macroscopic anatomo-pathology, histopathology, conventional bacteriology and virology by molecular techniques, cell culture and transmission electron microscopy. A specific illness affecting tadpoles up to 30 days old was characterized for the first time in farmed frogs of Brazil. The etiological agent is a virus of the *Iridoviridae* Family, genus *Ranavirus*. The syndrome is characterized by sudden outbreaks of morbidity and mortality above of 90% of the farm population. Clinically, swollen tadpoles with edemas and ascites were observed, as well as thin or emaciated ones. Lesions were located mainly in liver and kidneys, with almost complete tissue destruction. No bacterial agents could be incriminated in the etiology of the disease. An homology of almost 100% was detected into the genomic areas studied of the Brazilian virus, when compared with those of Frog Virus 3, indicating that the agent may have been carried by the frogs from North America. Another disease was found affecting tadpoles reaching the pre-metamorphic period and frogs. The disease should be considered as a "secondary streptococci septicemia" due to the abundance of Gram-positive cocci associated with the observed lesions. Death was consequence of the septicemia, associated with the functional damage of the liver and kidneys. A super acute syndrome was identified in frogs suggesting the presence of septic shock like syndrome. The so-called "red leg syndrome" was not observed in any of the frogs.

Keywords: Aquaculture, frog farming, septicemia, streptococci, ranavirus.
CAPÍTULO 1
1 CONSIDERAÇÕES GERAIS

A aquicultura na América do Sul tem experimentado um desenvolvimento muito acelerado, principalmente no Brasil, sendo uma das novas atividades produtivas com fins de obtenção de alimentos. Sua importância fez com que o atual governo criasse a Secretaria Especial de Aquicultura e Pesca subordinada diretamente à Presidência da República.

A ranicultura, apesar de constituir uma das atividades mais recentes dentro da aquicultura mundial, é uma das criações de organismos aquáticos que tem se estabelecido firmemente. Em decorrência do clima favorável, da excelente adaptação da rã touro (*Rana catesbeiana* Shaw, 1802) e da tecnologia desenvolvida pelos produtores e pesquisadores brasileiros, a ranicultura tornou-se uma importante atividade no Brasil, particularmente no Estado de Goiás. Dados referentes à produção obtida nos anos 2000-2004 colocam Goiás como o primeiro produtor do país com 150 toneladas anuais, o que representa 90% da exportação brasileira (SILVA, 2005). Esta produção encontra-se distribuída entre pequenos e médios produtores agropecuários, sendo um setor inovador e produtor de alimentos de alta qualidade para consumo humano. Seus principais mercados consumidores encontram-se em países desenvolvidos como Estados Unidos e França, constituindo importante fonte de divisas para os países exportadores.

Com a geração de conhecimentos sobre manejo e alimentação, a ranicultura transformou-se numa atividade super intensiva, com altas densidades de população e dependendo estritamente dos alimentos artificiais balanceados. Entretanto, a esses fatores se associa maior suscetibilidade às doenças de diversas etiologias o que ameaça à viabilidade técnica e econômica dos criatórios de organismos aquáticos, fato que também ocorre em outras atividades produtivas (AUSTIN, 1984).

A experiência compartilhada e o alto grau de desenvolvimento alcançado pela ranicultura no Brasil indicam que a presença de enfermidades têm inviabilizado a produção nos ranários constituindo-se em um dos principais fatores limitantes para o crescimento da atividade (MAZZONI, 2000; HIPÓLITO, 2002; SILVA, 2005). O fechamento no ano 2000 do maior ranário existente no Uruguai
no ano 2000, e o fim das atividades no ano 2005 do maior ranário do Brasil situado no Município de Hidrolândia, são exemplos relevantes.

Sendo a ranicultura uma atividade relativamente nova, a experiência no estudo científico das doenças em rãs de criação ainda pode ser considerada muito escassa, pois os produtores não tem conhecimento dos agentes etiológicos envolvidos e conseqüentemente das medidas profiláticas e terapêuticas apropriadas.

As descrições relativas a mortalidades generalizadas em ranários, citam quadros de ascite e edemas em girinos e rãs. Estes quadros podem estar ou não acompanhados de sintomatologia nervosa e, às vezes, as mortes ocorrem de forma súbita. É fato comum que num mesmo surto ocorram os diversos quadros clínicos que compõem a síndrome.

Apesar da importância econômica, diversos fatores têm dificultado o estudo científico destas doenças, principalmente a inespecificidade dos sinais clínicos em anfíbios, bem como as condições particulares de manejo e alimentação artificial que, muito provavelmente, constituem causas predisponentes para transformação de um eventual agente comensal num patógeno. Assim, numerosas pesquisas têm sido desenvolvidas mas sem conclusões claras quanto aos agentes etiológicos e, conseqüentemente, sem recomendações de medidas de controle e/ou prevenção (HIPÓLITO, 2002).

Por outro lado, existem informações abundantes sobre doenças que afetam anfíbios em populações selvagens, assim como aqueles utilizados para estudos em laboratórios. Estas informações podem ser utilizadas para melhor compreensão das doenças nas rãs de criação. Neste sentido, têm sido identificadas doenças emergentes produzidas por fungos e vírus, sendo que, em rãs de criação, esses agentes têm recebido pouca atenção. O fungo da espécie *Batrachochytrium dendrobatidis* foi detectado em rãs touro de criação no Uruguai (MAZZONI et al., 2003) e os vírus do gênero *Ranavirus* foram detectados em girinos de criação do citado país e também do Brasil (MAZZONI, 2003; GALLI et al., 2006). Estes diagnósticos, bem como a importância adquirida pelos vírus do gênero *Ranavirus* como causadores de doenças em anfíbios, peixes e répteis, são justificativas mais que suficientes para o aprofundamento do conhecimento sobre o papel desses microrganismos nas rãs de criação.
Diante do exposto e da relevância do tema, objetivou-se com o presente estudo determinar o papel dos vírus da Família *Iridoviridae* gênero *Ranavirus* nas doenças de importância econômica nos ranários comerciais, assim como estabelecer um diagnóstico diferencial visando relacionar sua eventual presença com os quadros clínicos observados. Para tanto, foram realizados estudos envolvendo os agentes etiológicos, a epizootiologia da doença, a sintomatologia clínica, a anatomia patológica macroscópica, a histopatologia, a bacteriologia convencional, e a virologia através de técnicas moleculares, cultura de células e microscopia eletrônica de transmissão.
2 REVISÃO DA LITERATURA

Surtos de doenças com alta mortalidade, caracterizados clinicamente por edemas e ascite, com ou sem sintomatologia nervosa, têm sido observados reiteradamente em girinos e rãs de criação.

No que pese essas doenças terem sido objeto de diversos estudos nas últimas décadas, estes foram direcionados principalmente à identificação dos agentes envolvidos em surtos ou episódios de mortalidade maior que a esperada, seja na fase de girino ou na adulta (AMBROSKY et al., 1983; HIPÓLITO et al., 1987, 1988a, b; BARROS et al., 1988; CARNEVIA & MAZZONI, 1988; GUIMARAES et al., 1988; MOREIRA et al., 1988; SOUZA, 1988; PINHEIRO, 1989; MAGALHAES, 1991a, b, c, 1992; MAGALHAES et al., 1992; SILVA et al., 1993, 1997; HIPÓLITO, 1995; MARTINS et al., 1995; FIORIO et al., 1997; HIPÓLITO, 1997; LIMA & VALLES, 1997; LIMA et al., 1997; MORAES et al., 1997; FERREIRA et al., 1998; HIPÓLITO, 1999; HIPÓLITO et al., 2000a; MAUEL et al., 2002; PASTERIS et al. 2006). Somente em uma oportunidade foi realizada pesquisa de vírus pela microscopia eletrônica (HIPOLITO et al., 2000). Em todos os outros trabalhos, os diagnósticos concentraram-se exclusivamente no achado de agentes parasitários ou bacterianos, não sendo realizado um estudo dos surtos no intuito de estabelecer o papel etiológico dos agentes detectados e outros aspectos das doenças que permitam a elaboração de medidas de prevenção e/ou controle. Em revisão, HIPÓLITO (2002) constatou que a maioria dos trabalhos tratava de comunicados efêmeros, não tendo continuidade no estudo do caso.

As septicemias têm sido reportadas como a causa mais importante de mortalidade em anfíbios, sendo frequente o achado de animais mortos sem sintomas premonitórios (CRAWSHAW, 1994). Porém existe ainda grande incerteza em relação às características destas patologias. Nos estudos e publicações realizados desde o final do século XIX até o ano 1995, a maioria dos trabalhos de diagnóstico identificou bactérias como responsáveis pelos surtos. Estes estudos incluíram a denominação de uma patologia chamada de perna vermelha ou “red leg”. A patologia é considerada como um complexo microbiológico ou síndrome, e foi apontada como a doença de maior importância
em anfíbios, sendo o agente predominante a *Aeromonas hydrophila* (RUSSEL, 1898; EMERSON & NORRIS, 1905; KULP & BORDEN, 1942; MILES, 1950; REICHENBACH-KLINKE & ELKAN, 1965; GIBBS et al., 1966; GLORIOSO et al., 1974; VAN DER WAAIJ et al., 1974; COSGROVE, 1980; HIRD et al., 1981; NYMAN S., 1986. VIZOTTO, 1988). Pesquisas enfocando a importância da síndrome da perna vermelha ainda continuam na literatura mais recente (SOMSIRI, 1994; MAUEL et al., 2002; HADFIELD et al., 2005; PASTERIS et al., 2006). Porém, esta enfermidade têm sido questionada como doença específica, sendo considerada apenas como manifestação clínica de septicemia e morte devida a agentes da microbiota normal que invadem o organismo debilitado por outras causas (CUNNINGHAM et al., 1996; MAZZONI, 2000a; GREEN et al., 2002).

Diversos estudos realizados em rãs de criação têm relatado a presença de estreptococos. GLORIOSO et al. (1974) descreveram os achados em *R. catesbeiana* septicêmicas dos Estados Unidos, assinalando a presença de estreptococos que, naquele momento, não foram considerados patogênicos. AMBROSKY et al. (1983) identificaram uma doença altamente letal, produzida por *Streptococcus* spp. não hemolítico afetando rãs de cativeiro em Belém-PA, Brasil. Os sinais clínicos e a epizootiologia da doença descrita são totalmente coincidentes com os das estreptococoses que ainda hoje continuam sendo diagnosticadas. Este trabalho comprova que a doença encontra-se presente nas rãs de criação há mais de 20 anos.

CUNNINGHAM et al. (1996) incriminaram *Streptococcus* sp. e estreptococos do grupo D em incidentes de mortalidade em *Rana temporaria* na Europa. FIORIO et al. (1997) descreveram bactérias do gênero *Streptococcus* em

A estreptococose tem sido identificada também em peixes, como uma síndrome produzida por cocos Gram-positivos de diversas espécies. Estas bactérias têm sido implicadas como produutoras de doenças em organismos aquáticos em várias partes do mundo. BERCOVIER et al. (1997) e ELDAR et al. (1997) descreveram a infecção estreptocócica como uma entidade produzida por bactérias dos géneros Streptococcus, Lactococcus, Enterococcus e Vagococcus. Estabeleceram que a “estreptococose” nos peixes deve ser considerada como um complexo de doenças semelhantes produzidas por diferentes géneros e espécies de cocos Gram-positivos, originando uma síndrome particular.

Streptococcus iniae tem sido incriminado reiteradamente como produtor primário de doenças em diversas espécies de peixes. A bactéria tem sido reportada como produtora de infecções em humanos, sendo considerada uma doença emergente (CDC, 1996; WEINSTEIN et al., 1997; GREENLEES et al., 1998; DURBOROW, 1999; LEHANE et al., 2000; FULLER et al., 2001; LAU et al., 2003)

Apesar da frequente presença de bactérias, seja Gram-negativas como as Aeromonas ou Gram-positivas como os estreptococos, existem dúvidas em relação ao papel primário das mesmas no processo móbido, pois em geral, trata-se de habitantes normais do ambiente. Foi assim que a partir de pesquisas realizadas na Inglaterra (CUNNINGHAM et al., 1996) e na Austrália (BERGER et al., 1998) que a responsabilidade das bactérias em surtos de mortalidade em anfíbios acabou adquirindo um papel secundário.

Vírus pertencentes à família Iridoviridae, gênero Ranavirus e um fungo chytridiomyceto (Batrachochytrium dendrobatidis) têm sido identificados como os verdadeiros agentes etiológicos nas enfermidades das rãs, mas até o final do
século passado não eram realizadas pesquisas nos ranários com o intuito de identificar esses agentes.

Os iridovírus que infectam animais aquáticos possuem distribuição mundial sendo associados a doenças severas em anfíbios (CUNNINGHAM et al., 1996; AHNE et al., 1997; ZUPANOVIC et al., 1998; DASZAK et al., 1999; CHINCHAR & MAO, 2000; DASZAK et al., 2000; HYATT et al., 2000; SPEARE, 2001; ZHANG et al., 2001; CHINCHAR, 2002; CULLEN & OWENS, 2002; HE et al., 2002; KIM et al., 2002; MARSH et al., 2002; WENG et al., 2002; DASZAK et al., 2003; GANTRESS et al., 2003; JANCOVICH et al., 2003; GREER et al. 2005. ROBERT et al., 2005; ZHANG et al., 2006). Os girinos apresentam a maior suscetibilidade e podem sofrer mortalidade de até 100% da população. Estes vírus podem infectar outras espécies diferentes dentro da mesma classe taxonômica, bem como animais de classes diferentes (MAO et al., 1999).

As primeiras suspeitas do envolvimento de vírus pertencentes à Família Iridoviridae, gênero Ranavirus foram levantadas a partir de observações em ranários do Uruguai (MAZZONI, 2000a, b; MAZZONI & CARNEVIA, 2000) e confirmadas em trabalhos que empregaram a técnica de detecção por reação em cadeia da polimerase (MAZZONI, 2003; GALLI et al., 2006). HIPÓLITO et al. (2000) empregaram a microscopia eletrônica de transmissão em amostras de rãs adultas criadas comercialmente no Brasil e detectaram partículas virais semelhantes aos grupos Herpesvírus, Togavírus e Paramixovírus, sem que fossem vinculadas à doença alguma. Nesse estudo não foram detectados agentes da Família Iridoviridae.

No entanto, existem dúvidas em relação ao poder patogênico destes agentes. Na rã touro, os mesmos foram detectados tanto em anfíbios sadios como doentes (WOLF et al., 1968). Em outras espécies, também os vírus foram encontrados em anfíbios sadios (ZUPANOVIC et al., 1998; ZHANG et al., 2001; GANTRESS et al., 2003, GREER et al. 2006).

Fato semelhante está ocorrendo com uma doença emergente produzida pelo fungo Batrachochytrium dendrobatidis que tem sido implicada com muita freqüência como responsável por surtos de mortalidade e diminuição de populações ao redor do mundo (BERGER et al., 1998,1999; DASZAK et al., 1999; LONGCORE et al., 1999; SPEARE & BERGER, 2000; MAZZONI, 2000a, 2000b;
BERGER et al., 2002; GUAYASAMIN et al., 2002; MAZZONI et al., 2003; SPEARE, 2003; HANSELMANN et al., 2004; BLAUSTEIN & DOBSON, 2006). O fungo tem sido identificado em países da América do Sul como Equador (BERGER et al., 1999; RON & MERINO, 2000), Venezuela (GUAYASAMIN et al., 2002; BONACCORSO et al., 2003; HANSELMAN et al., 2004), Uruguai (MAZZONI, 2000a, b; MAZZONI et al., 2003), Argentina (HERRERA et al., 2005) e Brasil (CARNAVAL et al., 2006). Apenas no Uruguai, o diagnóstico foi realizado em rãs de criação da mesma espécie cultivada no Brasil. Esse fato reveste-se de grande interesse pois existe a possibilidade do aparecimento da doença nas rãs brasileiras.

Outros fungos pertencentes ao clado Mesomycetozoa têm sido também implicados como causadores de doenças de anfíbios na natureza (GREEN et al., 2002).
3 OBJETIVOS

3.1 Objetivo geral

Objetivou-se com o presente trabalho determinar o papel dos vírus da Família Iridoviridae, gênero Ranavirus, nas doenças de importância econômica em ranários comerciais do Estado de Goiás, bem como caracterizar as formas clínicas das mesmas.

3.2. Objetivos específicos

3.2.1 Identificar e caracterizar o ranavírus detectado em girinos.

3.2.2 Estabelecer diagnóstico diferencial entre o ranavírus e outros agentes relacionados às doenças de importância econômica em ranários comerciais.

3.2.3 Estabelecer a epizootiologia, sintomatologia e alterações anatomo histopatológicas das doenças infecciosas que acometem girinos e rãs de criação (Rana catesbeiana Shaw 1802).

3.2.4 Caracterizar as formas clínicas das doenças infecciosas que acometem girinos e rãs de criação (Rana catesbeiana Shaw 1802).
REFERÊNCIAS

95. ZHANG, Q.; ZHE, Z.; XIAO, F.; LI, Z.; GUI, J. Molecular characterization of three Rana grylio virus (RGV) isolates and Paralichthys olivaceus lymphocystis

CAPITULO 2

CARACTERIZAÇÃO DE RANAVIRUS ISOLADOS DE GIRINOS DE RÃ TOURO (Rana catesbeiana Shaw, 1802) EM RANÁRIOS COMERCIAIS.

RESUMO

Vírus pertencentes à família Iridoviridae, gênero Ranavirus, têm sido diagnosticados como agentes etiológicos de doenças de anfíbios, peixes e répteis em diversas partes do mundo. Trabalhos recentes têm reportado a presença de agentes do gênero Ranavirus em girinos de rã touro do Brasil e Uruguai, por meio do emprego da técnica de PCR, revelando alta homologia nas regiões seqüenciadas do genoma com a espécie protótipo da família Iridoviridae, Frog Virus 3-FV3, além de outros vírus geneticamente muito próximos. Objetivou-se com o presente estudo caracterizar o vírus presente nas rãs de criação visando ampliar o conhecimento do agente, bem como estabelecer seu grau de homologia com outros vírus do gênero. Aplicaram-se técnicas de cultivo e isolamento em células A6, microscopia eletrônica de transmissão, e reação em cadeia da polimerase (PCR) visando amplificar e seqüenciar o gene completo que codifica a proteína principal da cápside (MCP) dos iridovírus, bem como outras regiões do genoma. Foram obtidos resultados positivos para iniciadores direcionados a MCP e para a RNA polimerase DNA dependente (Pol II), sendo o produto de PCR correspondente a MCP de aproximadamente 1480 pares de bases, e o correspondente à Pol II de aproximadamente 377 pares de bases. O seqüenciamento revelou homologia com FV3, superior a 99% para MCP e 100% para Pol II, indicando que, provavelmente, o vírus presente no Brasil pode ter sido introduzido por as rãs touro de criação importadas da América do Norte. A seqüência obtida para a MCP foi registrada no GenBank com o número DQ897669.

Palavras chave: FV3, Iridoviridae, MCP, ranicultura, vírus.
Viruses from the family *Iridoviridae*, genus *Ranavirus*, have been identified as etiological agents in amphibian, fish and reptile diseases all around the world. *Ranavirus* with high sequence homology with Frog Virus 3, type species of the *Iridoviridae* family, have been recently detected in farmed tadpoles from Brazil and Uruguay by polymerase chain reaction-PCR technique. The goal of this study was to amplify and sequence the complete major capsid protein gene (MCP) along with other genomic regions to increase the knowledge about homology degree of Brazilian virus related to other ranaviruses. Viral cell culture and isolation, as well as transmission electron microscopy studies were also performed. Positive results were obtained with primers directed to amplify MCP and RNA polymerase DNA dependent-Pol II genes. Amplified PCR products for complete MCP were about 1480 bp and 377 bp for Pol II. Multiple alignments for obtained sequences revealed homologies over 99% for MCP products and 100% for Pol II products with FV3, suggesting the imported American bullfrogs probably introduced the virus. Obtained sequence was deposited in GenBank with number DQ897669.

Key words: Frog farming, FV3, *Iridoviridae*, MCP, virus.
1 INTRODUÇÃO

Os ranavírus pertencem ao gênero *Ranavirus* da Família *Iridoviridae*, que inclui ainda os gêneros *Lymphocystisvirus, Chloriridovirus, Iridovirus*, e o recentemente identificado *Megalocytivirus*. São vírus grandes, que medem de 120 a 300 nm de diâmetro e apresentam simetria icosahédrica. O genoma é composto por uma única molécula linear de DNA de fita dupla com tamanho variável de 102 a 212 kbp, dependendo da espécie. O virión é constituído por três estruturas concêntricas: uma cápside protéica externa, uma membrana polipeptido-lipídica intermediária e um núcleo central contendo um complexo DNA-proteínas. Como característica única entre os vírus que infectam animais, apresentam DNA cíclicamente permutado e com terminações redundantes, resultante da formação de concatâmeros no genoma durante a replicação. Todos os representantes da família expressam a proteína principal da cápside (MCP) de aproximadamente 50 kDa, cujas propriedades moleculares são utilizadas para caracterização e identificação de espécies (WEBBY et al., 1998; CHINCHAR et al, 2005; WILLIAMS et al., 2005). A espécie protótipo da Família, *frog virus-3* (FV3) foi recentemente analisado e seu genoma completo seqüenciado (TAN et al., 2004).

Os ranavírus são agentes infecciosos capazes de acometer três classes diferentes de animais peciotérmicos vertebrados: peixes teleósteos, anfíbios e répteis (MAO et al., 1997; CAREY et al., 1999). Nos últimos 20 anos, as doenças produzidas por vírus desse gênero foram identificadas de forma crescente em peixes, anfíbios e répteis ocasionando enfermidades de importância econômica em criações comerciais, e levando à redução das populações de anfíbios na natureza. Nos últimos anos, os ranavirus têm sido considerados como patógenos emergentes (HEDRICK et al., 1992; HENGSTBERGER et al., 1993; CUNNINGHAM et al., 1996; MAO et al., 1996; AHNE et al., 1998; ZUPANOVIĆ et al., 1998; DASZAK et al., 1999; CHINCHAR & MAO, 2000; HYATT et al., 2000; ZHANG et al., 2001; CULLEN & OWENS, 2002; HE et al., 2002; KIM et al., 2002; MARSH et al., 2002; WENG et al., 2002; GANTRESS et al., 2003; JANCEVICH et al., 2003; QIN et al., 2003; SPEARE, 2003; DO et al, 2005; WILLIAMS, 2005; ZHANG et al., 2006) e recentemente as doenças produzidas por esse vírus foram
 colocadas pela Organização Internacional de Epizootias na lista das enfermidades dos animais selvagens (OIE, 2002).

A caracterização de uma espécie de ranavírus depende de um conjunto de resultados obtidos por meio de seqüenciamento, *restriction fragment length polymorphism* (RFLP), perfil de proteínas, tipo de hospedeiro e características estruturais (HYATT et al., 2000; WILLIAMS et al., 2005). Utilizando os citados recursos, foram determinadas seis espécies dentro do gênero *Ranavirus* FV3, *enzootic hematopoyetic necrotic virus* (EHNV), *Bohle iridovirus* (BIV), *Amblystoma tigrinum virus* (ATV), *European catfish virus* (ECV) e *Santee-Cooper ranavirus* (SCRV) (MAO et al., 1997; HYATT et al., 2000).

Quando a determinação das espécies é realizada através de técnicas que incluem a construção de dendrogramas filogenéticos, os métodos recomendados são aqueles realizados a partir do seqüenciamento total do genoma viral (HERNIOU et al., 2001) ou pelo menos os que incluem um grupo concatenado de genes (ROKAS et al., 2003).

MAO et al. (1997) demonstraram que os iridovírus isolados da mesma região geográfica são idênticos ou similares, mas o mesmo não acontece com aqueles provenientes de áreas diferentes. Os autores obtiveram esses dados após seqüenciamento da MCP, mas recomendando incluir outras regiões do genoma para melhor identificação das relações entre os vírus desta família.
Em estudo comparativo de 30 iridovírus isolados de peixes e anfíbios originários da Austrália, América do Norte, Ásia, Europa e Venezuela, HYATT et al. (2000) concluíram que existem diferenças filogenéticas entre vírus de diferentes regiões geográficas. Os autores estabeleceram que devido ao alto grau de conservação do gene que codifica a MCP no decorrer do tempo e dentro da mesma espécie, que pequenas diferenças na sequência são significativas. Porém, os autores também recomendaram a associação de diferentes técnicas para a identificação apropriada dos ranavírus.

MARSH et al. (2002) diferenciaram iridovírus da Austrália, Europa e América do Norte pelo sequenciamento da MCP e relataram que o gene encontrava-se conservado nos vírus da família, mas possuía variações que permitiam diferenciar entre espécies próximas. Recomendaram ainda o sequenciamento total da proteína para a obtenção de resultados confiáveis na diferenciação das espécies isoladas e na determinação do grau de conservação ao longo do tempo, em diferentes regiões geográficas e nas diversas espécies de hospedeiro.

GOLDBERG et al. (2003) exploraram as variações intraespecíficas entre cepas de iridovírus (*large mouth bass virus*-LMBV) isoladas de peixes na América do Norte. Os autores observaram diferenças nos resultados do *amplified fragment length polymorphism*-AFLP, mas não nas sequências do DNA analisadas e ressaltaram que no caso dos iridovírus, técnicas de “*genome screening*” como AFLP podem ser de maior utilidade que os sequenciamento parciais para resolver diferenciação entre cepas muito próximas geneticamente.

JANCOVICH et al. (2004) realizaram estudo filogeográfico dos ranavírus que acometem salamandras nos Estados Unidos, comparando 514 nucleotídeos da extremidade 5’ do gene da proteína MCP e identificaram-nos como pertencentes a um único grupo monofilogenético, diferente do FV3 e de outros ranavírus.

DO et al. (2005) analisaram através do sequenciamento total da MCP, 13 diferentes iridovírus isolados de peixes na Coréia do Sul tendo demonstrando que pertenciam a uma mesma espécie e que as semelhanças encontradas deveram-se à introdução de um único agente.
Considerando o exposto e as homologias com FV3 detectadas no vírus presente no Brasil (GALLI et al., 2006), objetivou-se com o presente trabalho realizar o isolamento e cultivo do vírus, e seqüenciamento completo do gene que codifica a MCP, além de complementá-lo com análises de outras regiões do genoma que permitem ampliar o conhecimento sobre o grau de homologia com outros vírus do gênero. Estes dados possibilitarão verificar o grau de conservação do vírus no decorrer de 35 anos desde a sua introdução no país.
2 MATERIAL E MÉTODOS

2.1 Amostras de Vírus

O vírus foi obtido de girinos doentes de até 30 dias de idade com sinais de edema e ascite, provenientes de três ranários localizados no Estado de Goiás, dois localizados no Município de Gameleira, 150 km ao sudoeste de Brasília e um no Município de Hidrolândia, 250 km ao sudoeste de Brasília. Os girinos foram preservados em etanol a 95% no local de colheita ou congelados a -20°C no laboratório. Como controle positivo foi utilizada uma cepa cedida pelo Dr. V. G. Chinchar da Universidade do Mississippi, Estados Unidos.

2.2 Isolamento de vírus

O isolamento do vírus foi realizado no Departamento de Microbiologia e Imunologia da Universidade de Rochester, Nova Iorque, no laboratório de Biologia Molecular do Centro de Pesquisa em Alimentos da Escola de Veterinária e no setor de Virologia Animal do Instituto de Patologia Tropical e Saúde Pública da Universidade Federal de Goiás. Para isolamento e cultivo do vírus, girinos congelados foram macerados com grau e pistilo esterilizados adicionando-se água destilada esterilizada para facilitar a suspensão do material. Com auxílio de seringa esterilizada de 5 mL, o material foi colhido e distribuído em tubos tipo eppendorf esterilizados de 2 mL. Procedeu-se o congelamento e descongelamento do macerado por três vezes à -80°C, seguido de centrífugação a 10.000 rpm por 10 minutos. O sobrenadante contendo o vírus foi filtrado em filtro “Millipore” de 0,45µ, aliquotado e armazenado a -80°C até o momento do uso.

A suspensão de girinos macerada e filtrada foi inoculada em células A6 obtidas a partir de fibroblastos de rã (RAFFERTY, 1969) cedidas pelo Prof. Dr. Jacques Robert da Universidade de Rochester. Inicialmente procedeu-se a cultura de células em garrafas de 25 cm² com o meio de cultura “Dulbecco’s Modified Eagle Medium” (dMEM-GIBCO) com adição de antibióticos e antifúngicos e incubadas à temperatura ambiente em câmara escura. Assim que as células alcançaram 80% de confluência, desprezou-se o meio de cultura e inoculou-se 1.0 mL da suspensão viral, imediatamente após o descongelamento, ou 1.0 mL
de PBS na garrafa controle. Na fase experimental realizada nos Estados Unidos, utilizou-se uma cepa de comprovado efeito citopático (ECP) como controle positivo. Após um período de 45 minutos para permitir a aderência dos vírus às células, foram adicionados 5 mL do meio de cultura. Os cultivos foram observados duas vezes por dia, durante sete dias, para verificação de ECP. Com o intuito de aumentar a concentração viral e permitir a máxima expressão da virulência foram realizadas três passagens cegas do vírus. Cada passagem consistiu em congelar a – 80°C e descongelar, por três vezes, as garrafas nas quais foram observados ECP. A seguir, procedeu a centrifugação a 5000 RPM durante 10 minutos, sendo o sobrenadante obtido novamente aliquotado em tubos tipo eppendorf de 2 mL e reutilizado imediatamente ou congelado a – 80°C até sua reutilização.

2.3 Reação em cadeia da polimerase (PCR)

Para identificação do vírus, diretamente de suspensão de girinos e dos cultivos celulares inoculados, utilizou-se a técnica de PCR.

A extração do DNA viral foi realizada a partir de porções de 50 mg de girinos inteiros após maceração utilizando o método do fenol/clorofórmio (SAMBROOK et al., 1989). Foram utilizados iniciadores direcionados a regiões conservadas no genoma dos iridovírus (Quadro 1), principalmente para o gene que codifica a proteína imediata precoce (IE) ICP-18, a proteína MCP, a RNA polimerase DNA dependente (Pol II) e a subunidade α do fator de iniciação eucariótico (eIF2-α).

Os iniciadores direcionados para amplificação do gene que codifica a proteína IE (GALLI et al., 2006) foram utilizados como “screening” primário das amostras, por ter sido comprovadamente eficaz nas condições de nosso laboratório. Sendo que na amostra positiva, realizava-se o PCR com os demais iniciadores.

Com o intuito de obter o gene completo responsável pela codificação da MCP, foram utilizados iniciadores localizados nas extremidades 5´e 3´ do gene correspondente na seqüência de FV3 (TAN et al., 2004) sendo que o iniciador “forward” é original do presente trabalho e o “reverse” já utilizado por HYATT et al. (2000) segundo é apresentado no Quadro 1. Para a determinação da temperatura
ótima de anelamento de este par de iniciadores realizou-se uma PCR de gradiente térmico, sendo avaliadas as temperaturas desde 50°C até 65°C.

QUADRO 1 – Iniciadores utilizados para amplificação parcial do genoma de ranavirus, “bp” indica o comprimento do amplicon.

<table>
<thead>
<tr>
<th>Nome</th>
<th>Forward</th>
<th>Reverse</th>
<th>Produto (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP</td>
<td>ATGTCTTCTGTAACTGGTTCA</td>
<td>AAAGACCCGTTTTGCAGCAAAC (1)</td>
<td>1483</td>
</tr>
<tr>
<td>Pol II</td>
<td>TCACCGCCGCAGACATCTTTAG</td>
<td>GTAACCGTTCTTTTTCGAGTG</td>
<td>377</td>
</tr>
<tr>
<td>IE</td>
<td>ATGATCCAAGCCTACCTGTGC (2)</td>
<td>AAATGTCCTAATCTATACACC (2)</td>
<td>479</td>
</tr>
<tr>
<td>eIF2α</td>
<td>CAACAACAGGGACATCAGAAAGAG</td>
<td>TCTCGTTCCAGACATCGGGAG</td>
<td>289</td>
</tr>
</tbody>
</table>

(1) HYATT et al. (2000); (2) GALLI et al. (2006). Os restantes iniciadores são originais do presente trabalho.

O mix utilizado para a amplificação com os diferentes iniciadores constituía-se de 2,5 µL 10x tampão de PCR [Tris-HCl 20 mM (pH 8.4), KCl 50 mM], dNTP 200 µM, 2,5 mM MgCl2, 2.5 µM de cada iniciador, 1 U de Taq DNA Polymerase, 5 µL de DNA template e água MilliQ até completar 50 µL para cada reação. Os ciclos de amplificação para cada par de iniciadores utilizados são apresentados no Quadro 2.

Os produtos de amplificação foram submetidos a corrida em gel de agarose a 1%, corados com brometo de etídeo 0.5 µg/mL e visualizados em transiluminador de luz UV.
QUADRO 2 – Protocolos de PCR utilizados para cada par de iniciadores.

<table>
<thead>
<tr>
<th></th>
<th>1er. ciclo</th>
<th>Desnatuação</th>
<th>Anelamento</th>
<th>Extensão</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N° de ciclos</td>
<td>°C t (min)</td>
<td>°C t (min)</td>
<td>°C t (seg)</td>
<td>°C t (min)</td>
</tr>
<tr>
<td>MCP</td>
<td>40</td>
<td>90 1</td>
<td>94 1</td>
<td>60 60 72 1,5</td>
<td>72 5</td>
</tr>
<tr>
<td>Pol II</td>
<td>40</td>
<td>90 1</td>
<td>94 1</td>
<td>60 60 72 1</td>
<td>72 5</td>
</tr>
<tr>
<td>IE</td>
<td>30</td>
<td>90 1</td>
<td>94 1</td>
<td>45 40 72 1</td>
<td>72 5</td>
</tr>
<tr>
<td>eIF2α</td>
<td>40</td>
<td>90 1</td>
<td>94 1</td>
<td>60 60 72 1</td>
<td>72 5</td>
</tr>
</tbody>
</table>

2.4 Seqüenciamento

Os produtos amplificados e confirmados na leitura como correspondendo ao peso molecular esperado, foram sequenciados no Laboratório de Genoma de Plantas, Instituto de Ciências Biológicas da Universidade Federal de Goiás. Todos os produtos foram seqüenciados pelo menos seis vezes em ambas as cadeias. A reação de seqüenciamento dos fragmentos ocorreu com cada oligonucleotídeo iniciador separado. O protocolo utilizado foi o seguinte: 1µL do produto de PCR, 2,5 pmol de oligonucleotídeo iniciador, 2 µL de tampão SaveMoney (2 mL de Tris-HCl 1M pH 9.0, 1 mL de MgCl₂ 50 mM, água MiliQ-q.s.p. 10 mL), 1 µL do kit DYEnamicTM ET Terminator Cycle Sequencing (Pharmacia Biotech, EUA). A reação foi realizada no termociclador GeneAmp PCR Systems 9700 (Applied Biosystems), cujos ciclos foram de 95°C durante 20 segundos e 60°C por 1 minuto e 15 segundos.

A etapa de precipitação do DNA ocorreu da seguinte maneira: 40 µL de isopropanol 65% foram adicionados aos 10 µL de reação. A mistura foi homogeneizada no vortex (TECNAL –TE162) por 30 segundos. Deixou-se que a precipitação ocorresse à temperatura ambiente por 20 minutos. As amostras foram, entanto, centrifugadas a 2000 rcf (força de centrifugação relativa) por 45 minutos e o sobrenadante descartado. Ao precipitado, foram adicionados 250 µL de etanol 60% para lavagem do material, e centrifugado a 2000 rcf por 10 minutos. O processo de lavagem com álcool foi repetido utilizando 100 µL do mesmo e, o sobrenadante descartado. A placa contendo as amostras foi
centrifugada de maneira invertida a 500 rpm por um minuto para garantir que todo o álcool fosse retirado da mesma. Uma secagem complementar foi realizada deixando-se a placa por aproximadamente 10 minutos na capela de fluxo laminar. Este material foi ressuspensão em 10 µL de formamida, vortexado por 1 minuto, deixado à temperatura ambiente por 5 minutos e levado em triplicatas ao analisador automático de seqüências 3100 DNA Sequencer (Applied Biosystems ABI Prism).

3 RESULTADOS

3.1 Isolamento em cultura de células

Após 48 horas da inoculação, as células começaram a evidenciar sinais de lesão viral. A uniformidade do tapete começou a desaparecer, as células perderam seu contorno regular e desprenderam-se do tapete, além de apresentar lise celular. Muitas células mostraram-se alongadas ou com forma de estrela (Figura 1).

![Figura 1 - Cultura de células A6 mostrando o efeito citopático após 48 horas de inoculação da suspensão de girinos suspeitos de infecção por ranavírus.](image)

3.2 PCR

Foram obtidos resultados positivos com os iniciadores utilizados na amplificação do DNA genômico das amostras de girinos de até 30 dias de idade, salvo com aqueles iniciadores direcionados ao gen elF2-α.

A temperatura de anelamento ótima para amplificação completa da MCP foi de aproximadamente 60°C (Figura 2). O produto de amplificação apresenta aproximadamente 1480 pares de bases.
FIGURA 2 – Gel de PCR de gradiente térmico realizado para determinação da temperatura ótima de anelamento dos iniciadores direcionados à amplificação do gene completo que codifica a proteína MCP. Canaletas 1 e 15 marcador de peso molecular. Canaletas 2 a 14 com os produtos de PCR desde 50 até 62°C. Canaleta número 12 representa a amostra de 60°C.

A Figura 3 mostra os resultados da amplificação do DNA genômico obtidos a partir de girinos de até 30 dias de idade utilizando os iniciadores para Pol II. Observa-se a obtenção de um produto de aproximadamente 377 pares de bases.

FIGURA 3 – Gel de PCR mostrando o produto de amplificação obtido com iniciadores direcionados à amplificação do gen que codifica a proteína Pol II. Canaletas 1 e 6 marcador de peso molecular 100 bp ladder. Canaletas 2 e 3 amostras positivas com peso molecular de aproximadamente 377 bp. Canaleta 4 controle positivo, e 5 controle negativo.
3.3 Seqüenciamento

A análise das seqüências obtidas pela amplificação completa do gene que codifica a MCP permitiu identificar uma série de 1465 pares de bases, sendo registrada no GenBank com o número de acesso DQ897669. Verificou-se homologia de 99,7% com as seqüências AY548484 e U36913 correspondentes à FV3, com 1461 bp idênticas, entre o total de 1465. Os altos percentuais revelam a grande homologia com outros vírus pertencentes ao gênero Ranavirus, sendo apresentados no alinhamento múltiplo da Figura 4. A partir destes dados foi realizado o alinhamento múltiplo das seqüências nucleotídicas completas, elaborada uma matriz de distâncias genéticas entre os vírus (Tabela 1) e o dendrograma correspondente (Figura 5).

Os percentuais na homologia do gene que codifica a proteína MCP continuaram elevados quando comparadas às seqüências de aminoácidos deduzidas. Foi encontrada uma identidade de 99% com FV3 -U36913 e AY548484; 98% com Bohle iridovirus - AY187046 e Rana tigrina ranavirus - AY033630, AY033630 e AF389451; 96% com Epizootic haematopoietic necrosis virus - AY187045; e 95% com Ambystoma tigrinum virus - AY150217.

A comparação com traduções da MCP não constantes no GenBank correspondentes a Rana grylio virus, mas publicadas por ZHANG et al. (2006) revelou 99% de homologia com RGV 9506 e RGV 9507 e 97% com RGV 9508. A Figura 6 apresenta o alinhamento múltiplo da tradução dos aminoácidos correspondente à seqüência completa da MCP para o vírus isolado no Brasil e a comparação com outros vírus do gênero.

Quando analisadas as seqüências do gene que codifica a proteína Pol II, foram identificadas 356 pares de bases, com 100% de homologia com a seqüência do FV3 AY548484, 98% com Tiger frog virus - AF389451, 96% com Regina ranavirus - AF368230 e Ambystoma tigrinum stebbensi virus - AY150217.

O vírus detectado no Brasil localizou-se geneticamente junto com FV3 nos dendrogramas elaborados para ambas seqüências. Esta proximidade está corroborada com os altos valores de “bootstrap” obtidos (Figuras 5 e 7).
AY033630 1321 ... 1380
AY187046 1321 ... T 1380
AY187045 1337 ... 1396
AY150217 16331 ... 16272
AF157669 422 ... 481
AF157669 422 ... 481
AF157647 422 ... 481
AF157645 422 ... 481
AF157677 422 ... 481
AF157675 422 ... 481
AF157663 422 ... 481
AF157661 422 ... 481
AF157657 422 ... 481
AF157655 422 ... 481
AF157653 422 ... 481
AF157649 422 ... 481
AF157673 422 ... 481
AF157671 422 ... 481
AF157651 422 ... T 481
AF157679 422 ... 481
AF157659 422 ... 481
AF157667 422 ... 481
AF157665 422 ... 481
dq906049 155 ... 96
dq906048 155 ... 96
m19872 148 ... 207
af367980 7994 ... 7935
ay833650 118 ... T 177

dq897669 1381 CCAATCTTGTAAAGATA-TTTCTGAGCGAAAGTCTTTTGTCGTCATGGGTCCCGTCA 1439
ay548484 98725 ... 98783
u36913 1472 ... 1530
af389451 97318 ... 97376
ay033630 1381 ... T 1439
ay187046 1381 ... 1439
ay187045 1397 ... 1455
ay150217 16271 ... 16213
af157681 482 ... 540
af157669 482 ... 540
af157647 482 ... 540
af157645 482 ... 540
af157677 482 ... 540
af157675 482 ... 540
af157663 482 ... 540
af157661 482 ... 540
af157657 482 ... 540
af157655 482 ... 540
af157653 482 ... 540
af157649 482 ... 540
af157673 482 ... 540
af157671 482 ... T
af157651 482 ... T
af157679 482 ... T
af157659 482 ... T
af157667 482 ... T
af157665 482 ... T
dq906049 95 ... 37
dq906048 95 ... 37
m19729 208 ... 266
af367980 7934 ... 7976
ay833650 178 ... T 236

dq897669 1440 TGGAAAATAAAAACATGAGGTCCCGTT 1465
ay548484 98794 ... 98809
u36913 1531 ... 1556
af389451 97377 ... 97402
ay033630 1440 ... 1462
ay187046 1440 ... 1456
ay187045 1456 ... 1472
ay150217 16212 .A ... 16187
af157681 541 ... 566
af157669 541 ... 566
af157647 541 ... 566
af157645 541 ... 566
af157677 541 ... 566
<table>
<thead>
<tr>
<th>Accession</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF157675</td>
<td>541</td>
</tr>
<tr>
<td>AF157663</td>
<td>541</td>
</tr>
<tr>
<td>AF157661</td>
<td>541</td>
</tr>
<tr>
<td>AF157657</td>
<td>541</td>
</tr>
<tr>
<td>AF157655</td>
<td>541</td>
</tr>
<tr>
<td>AF157653</td>
<td>541</td>
</tr>
<tr>
<td>AF157649</td>
<td>541</td>
</tr>
<tr>
<td>AF157673</td>
<td>541</td>
</tr>
<tr>
<td>AF157671</td>
<td>542</td>
</tr>
<tr>
<td>AF157665</td>
<td>542</td>
</tr>
<tr>
<td>AF157679</td>
<td>542</td>
</tr>
<tr>
<td>AF157659</td>
<td>542</td>
</tr>
<tr>
<td>AF157667</td>
<td>541</td>
</tr>
<tr>
<td>DQ906049</td>
<td>36</td>
</tr>
<tr>
<td>DQ906048</td>
<td>36</td>
</tr>
<tr>
<td>M19872</td>
<td>267</td>
</tr>
<tr>
<td>AF367980</td>
<td>7875</td>
</tr>
<tr>
<td>AY833650</td>
<td>237</td>
</tr>
</tbody>
</table>

FIGURA 4 – Alinhamento múltiplo para a sequência de MCP obtida no Brasil (DQ897669) com aquelas disponíveis no GenBank. DQ897669 Brazilian virus MCP; AY548484 Frog Virus 3 genoma completo; U36913 Frog virus 3 MCP gene; AF389451 Tiger frog virus, genoma completo; AY033630 Rana tigrina ranavirus MCP gene; AY187046 Bohle iridovirus MCP gene; AY187045 Epizootic haematopoietic necrosis virus MCP gene; AY150217 Ambystoma tigrinum stebbensii virus, genoma completo; AF157681 Tadpole edema virus MCP gene; AF157669 Frog virus 3 MCP gene; AF157647 Rana temporaria United Kingdom iridovirus 2 MCP gene; AF157645 Rana temporaria United Kingdom iridovirus 1 capsid MCP; AF157675 Bufo marinus Venezuelan iridovirus 3 MCP gene; AF157663 Bufo marinus Venezuelan iridovirus 4 MCP gene; AF157661 Bufo marinus Venezuelan iridovirus 6 MCP gene; AF157657 Bufo bufo United Kingdom iridovirus 3 MCP gene; AF157655 Bufo bufo United Kingdom iridovirus 2 MCP gene; AF157653 Bufo bufo United Kingdom iridovirus 1 MCP gene; AF157649 Bufo marinus Venezuelan iridovirus 1 MCP gene; AF157673 Leptodactylus Venezuelan iridovirus 1 MCP gene; AF157671 Guppyfish iridovirus MCP gene; AF157651 Bohle iridovirus MCP gene; AF157679 Sheefish iridovirus MCP gene; AF157659 Catfish iridovirus MCP gene; AF157667 EHNV MCP gene; AF157665 Doctor fish virus MCP gene; DQ906049 FV 3 MCP gene; DQ906048 FV3 MCP gene; M19872 FV3 ICR489 gene; AF367980 Regina ranavirus clone PstI 8.141 P8.141A, P8.141B, P8.141C e P8.141D genes, e MCP gene; AY833650 Bohle iridovirus ICP 46 (ICP 46) gene. Os pontos indicam igual base na posição indicada. Os números ao lado das sequências indicam a posição das bases.
TABELA 1 – Análise comparativa das seqüências completas de nucleotídeos da proteína maior da cápside (MCP) de ranavirus. Os valores representam o grau de diferença na seqüência de 1463 bp.

<table>
<thead>
<tr>
<th>Matriz de Distâncias</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranavirus*</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 DQ897669</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 FV3</td>
<td>0.005 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 TFV</td>
<td>0.020 0.019 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 RTV</td>
<td>0.023 0.022 0.003 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 BIV</td>
<td>0.031 0.028 0.031 0.027 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 EHNV</td>
<td>0.042 0.039 0.038 0.035 0.029 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 ATV</td>
<td>0.049 0.048 0.046 0.049 0.058 0.034 0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 1 – Ranavírus isolado no Brasil (DQ987669)
2 – FV3 genoma completo (AY548484)
3 - Tiger Frog Virus genoma completo (AF389451)
4 – Rana tigrina ranavírus MCP (AY033630)
5 – Bohle iridovírus MCP (AY187046)
6 - Epizootic haematopoietic necrosis virus MCP (AY187045)
7 - Ambystoma tigrinum stebbensi virus, genoma completo (AY150217)
FIGURA 5 – Dendrograma com valores de “bootstrap” construído com o alinhamento das seqüências completas da proteína MCP de ranavírus isolado no Brasil e outros vírus do gênero *Ranavirus*.
<table>
<thead>
<tr>
<th>Proteína</th>
<th>Sequência de aminoácidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGV 9506</td>
<td>FNDISAQSFNTAYLDASEYTMPEAKRGGYMNGTSDLINPAPATQDGARVLPAKNL</td>
</tr>
<tr>
<td>RGV 9507</td>
<td>FNDISAQSFNTAYLDASEYTMPEAKRGGYMNGTSDLINPAPATQDGARVLPAKNL</td>
</tr>
<tr>
<td>RGV 9508</td>
<td>FNDISAQSFNTAYLDASEYTMPEAKRGGYMNGTSDLINPAPATQDGARVLPAKNL</td>
</tr>
<tr>
<td>BIV</td>
<td>FNDISAQSFNTAYLDASEYTMPEAKRGGYMNGTSDLINPAPATQDGARVLPAKNL</td>
</tr>
<tr>
<td>TFV</td>
<td>FNDISAQSFNTAYLDASEYTMPEAKRGGYMNGTSDLINPAPATQDGARVLPAKNL</td>
</tr>
<tr>
<td>EHNV</td>
<td>FNDISAQSFNTAYLDASEYTMPEAKRGGYMNGTSDLINPAPATQDGARVLPAKNL</td>
</tr>
</tbody>
</table>

BRASIL 181
<table>
<thead>
<tr>
<th>Sequência de aminoácidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>FV3</td>
</tr>
<tr>
<td>RGV 9506</td>
</tr>
<tr>
<td>RGV 9507</td>
</tr>
<tr>
<td>RGV 9508</td>
</tr>
<tr>
<td>BIV</td>
</tr>
<tr>
<td>TIV</td>
</tr>
<tr>
<td>EHNV</td>
</tr>
</tbody>
</table>

BRASIL 241
<table>
<thead>
<tr>
<th>Sequência de aminoácidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>FV3</td>
</tr>
<tr>
<td>RGV 9506</td>
</tr>
<tr>
<td>RGV 9507</td>
</tr>
<tr>
<td>RGV 9508</td>
</tr>
<tr>
<td>BIV</td>
</tr>
<tr>
<td>TFV</td>
</tr>
<tr>
<td>EHNV</td>
</tr>
</tbody>
</table>

BRASIL 301
<table>
<thead>
<tr>
<th>Sequência de aminoácidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>FV3</td>
</tr>
<tr>
<td>RGV 9506</td>
</tr>
<tr>
<td>RGV 9507</td>
</tr>
<tr>
<td>RGV 9508</td>
</tr>
<tr>
<td>BIV</td>
</tr>
<tr>
<td>TFV</td>
</tr>
<tr>
<td>EHNV</td>
</tr>
</tbody>
</table>

BRASIL 361
<table>
<thead>
<tr>
<th>Sequência de aminoácidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>FV3</td>
</tr>
<tr>
<td>RGV 9506</td>
</tr>
<tr>
<td>RGV 9507</td>
</tr>
<tr>
<td>RGV 9508</td>
</tr>
<tr>
<td>BIV</td>
</tr>
<tr>
<td>TFV</td>
</tr>
<tr>
<td>EHNV</td>
</tr>
</tbody>
</table>

BRASIL 421
<table>
<thead>
<tr>
<th>Sequência de aminoácidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>FV3</td>
</tr>
<tr>
<td>RGV 9506</td>
</tr>
<tr>
<td>RGV 9507</td>
</tr>
<tr>
<td>RGV 9508</td>
</tr>
<tr>
<td>BIV</td>
</tr>
<tr>
<td>TFV</td>
</tr>
<tr>
<td>EHNV</td>
</tr>
</tbody>
</table>

FIGURA 6– Alinhamento múltiplo realizado com Clustal W dos aminoácidos da proteína MCP para a sequência do vírus isolado no Brasil; FV3 - AY548484; três cepas de Rana grylio virus (RGV) sequenciadas por ZHANG et al. (2006); Bohle iridovirus (BIV) AY187046; Tiger frog virus (TFV) AY033630; e Epizootic hematopoietic necrotic virus (EHNV) AY187045. Os aminoácidos que diferem de FV3 encontram-se sombreados.
TABELA 2 – Análise comparativa das seqüências de nucleotídeos da proteína RNA polimerase DNA dependente (Pol II) de ranavirus. Os valores representam o grau de diferença na seqüência de 356 bp.

Matriz de Distâncias

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FV3</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFV</td>
<td>0.036</td>
<td>0.036</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATV</td>
<td>0.065</td>
<td>0.065</td>
<td>0.030</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>RRV</td>
<td>0.262</td>
<td>0.266</td>
<td>0.254</td>
<td>0.261</td>
<td>0.000</td>
</tr>
</tbody>
</table>

* 1 – Ranavírus isolado no Brasil (DQ987669)
2 – FV3 (AY548484)
3 - “Tiger Frog Virus” (AF389451)
4 - “Ambystoma tigrinum stebbensi virus” (AY150217)
5 - "Regina ranavirus" (AF368230)

FIGURA 7 – Dendrograma com valores de “bootstrap” construído com o alinhamento das seqüências de nucleotídeos da proteína Pol II de ranavirus isolado no Brasil e outros vírus do gênero Ranavirus.
DISCUSSÃO E CONCLUSÕES

Os resultados obtidos no presente trabalho confirmam a presença de um vírus pertencente ao gênero *Ranavirus* em rãs touro criadas no Brasil. Ressalta-se que a elevada homologia verificada entre as regiões seqüenciadas do vírus em estudo e aquelas do FV3, corroboram as observações de GALLI et al. (2006) e indicam que o vírus detectado no Brasil foi, provavelmente, introduzido no país junto com as rãs importadas da Améria do Norte.

Segundo ESSANI & GRANOFF (1989), o “vírus do edema do girino-TEV” pode ser considerado uma cepa do FV3. Esse agente, isolado de rãs touro na América do Norte, foi considerado endêmico nesta espécie (WOLF et al., 1968). Estas observações concordam com as do presente estudo, no sentido de que o vírus isolado nas rãs touro do Brasil, pode ser o mesmo FV3 dos Estados Unidos e não uma outra espécie autóctone da América do Sul.

HYATT et al. (2000) realizando comparações entre 30 iridovírus isolados de peixes e anfíbios verificaram que as seqüências obtidas da proteína MCP indicavam que os vírus de diferentes regiões agrupavam-se em clados separados. Assim, os vírus da Venezuela formaram um clado individual, diferente daqueles da América do Norte. Os dados obtidos no presente trabalho situam o vírus estudado no mesmo clado do FV3, portanto, geneticamente mais próximo a este do que dos vírus geograficamente vizinhos, reforçando a hipótese de que a introdução do vírus no Brasil ocorreu através da importação de rãs da América do Norte.

ZHANG et al. (2001) ao caracterizarem os ranavírus isolados de rãs de criação (*R. grylio*) na China, por meio de estudos da extremidade 5´ da MCP concluíram que os três vírus isolados eram semelhantes entre si e com o FV3, diferenciando-se deste último apenas por um nucleotídeo. Seus resultados levaram os autores a considerarem que a entrada do vírus no país deu-se através das rãs de criação importadas dos Estados Unidos. Provavelmente, o mesmo aconteceu na América do Sul com a introdução da rã touro.

ZHANG et al. (2006) amplificaram e seqüenciaram o gene que codifica a MCP, tendo verificado maiores diferenças na extremidade 3´, e homologia com FV3 superior a 99% para RGV9506 e 9507, e de 97,4% para RGV9508. Estes resultados são semelhantes aos obtidos no presente trabalho e indicam elevada
conservação genética do FV3 ao longo do tempo em diferentes áreas geográficas.

Quando comparados os aminoácidos da proteína MCP dos três vírus da China com as obtidas no presente trabalho, observaram-se homologias de 99% com RGV 9506 e RGV 9507, e 97% com RGV 9508. Estes resultados eram esperados, considerando a alta homologia verificada entre os vírus da China e os do presente estudo com o FV3.

Mas, segundo GOLDBERG et al. (2003) outras técnicas de caracterização molecular como “amplified fragment length polymorphism” (AFLP) devem ser utilizadas para determinar com maior precisão a similaridade com o FV3.

Estudos recentes de GALLI et al. (2006) revelam semelhanças entre os vírus isolados de rãs touro de criação do Brasil e do Uruguai, bem como sua similaridade com FV3. Os resultados do presente trabalho despertam interesse na realização de estudos do genoma com o vírus detectado no Uruguai, uma vez que a introdução de rãs nesse país foi realizada a partir de rãs de criação do Brasil, em 1998.

No que pese a alta homologia verificada com FV3 nos fragmentos do genoma do vírus isolado no Brasil, nota-se algumas diferenças no gene que codifica a proteína eIF2α. Este gene, relacionado com fatores de virulência (ESSAUBER et al., 2001), não foi detectado com os iniciadores aqui utilizados, sendo que o controle positivo, constituído por uma cepa de FV3, sempre amplificou. No entanto, o sequenciamento total do genoma do mutante de FV3 aza-C foi não identificou um gene completo correspondente à proteína eIF2α (TAN et al., 2004). Nesse sentido, torna-se interessante a avaliação de fatores de virulência, uma vez que o vírus presente no Brasil, apesar de associado a surtos de mortalidade generalizada em girinos, parece não representar grande perigo para as rãs (dados não apresentados). Esses vírus podem se tornar patogênicos devido a causas estressantes ou debilidade dos animais, como reiteradamente enfatizado por CHINCHAR, (2000); ZHANG et al. (2001); GOLDBERG et al. (2003); WILLIAMS et al. (2005).

Aparentemente o FV3 e espécies semelhantes não representam um patógeno que possa ameaçar as populações de rã touro, ficando reservado a este
anfíbio o papel de um potencial disseminador do vírus devido a sua grande utilização em ranicultura e, conseqüentemente, uma ameaça potencial para as populações de anfíbios na natureza. Considerando os ranavírus, encontra-se bem estabelecido que uma cepa pouco patogênica para uma espécie animal pode ser muito agressiva para outra. Adicionalmente verifica-se o perigo de disseminação a outras classes de organismos aquáticos (HENGSTBERGER et al., 1993; ZUPANOVICE et al., 1998; MAO et al., 1999; CHINCHAR, 2002; WILLIAMS et al., 2005).

Embora no presente trabalho tenha sido observada elevada homologia entre o vírus isolado no Brasil e o FV3, são necessários estudos mais aprofundados que incluam o perfil de proteínas, o padrão AFLP e, preferencialmente, o seqüenciamento completo do seu genoma visando a classificação exata da espécie detectada.
REFERÊNCIAS

CAPITULO 3

RANAVÍRUS ASSOCIADOS A MORTANDADE DE GIRINOS (*Rana catesbeiana* Shaw, 1802) DE CRIAÇÃO INTENSIVA NO BRASIL.

RESUMO

Doenças que cursam com alta mortalidade, caracterizadas clinicamente por edemas e ascite, têm sido observadas reiteradamente em girinos de criação. O conhecimento destas doenças é escasso, tornando necessário determinar os agentes etiológicos envolvidos, visando sugerir as correspondentes medidas profiláticas e terapêuticas. Agentes virais pertencentes à Família *Iridoviridae*, gênero *Ranavirus*, têm sido confirmados recentemente em girinos de criação por meio da técnica de reação em cadeia da polimerase. Assim, objetivou-se com o presente trabalho a caracterização das doenças nos girinos, visando principalmente determinar a participação etiológica dos vírus. Foram realizados estudos em três ranários comerciais do Estado de Goiás, incluindo necropsias, análises histopatológicas, microbiológicas, parasitológicas, moleculares e de microscopia eletrônica de transmissão. Foram identificados dois quadros clínicos diferentes, sendo um deles em girinos jovens de até quatro semanas de vida, com mortalidade acima de 90% da população, cuja etiologia foi atribuída a um vírus do gênero *Ranavirus*, Família *Iridoviridae*. O outro em girinos na pré-metamorfose, cuja presença de cocos Gram-positivos constitui a causa principal das lesões encontradas e dos sinais clínicos evidenciados. Pela primeira vez foi identificada uma doença produzida por iridovírus no Brasil, tornando um achado de importância para a ranicultura, e também para a aqüicultura em geral, tendo em vista que estes agentes podem acometer outros grupos de organismos aquáticos.

Palavras chave: Aqüicultura, estreptococos, ranicultura, septicemia, vírus.
ABSTRACT

Diseases with high mortality, clinically characterized by oedema and ascites, have been frequently observed in farmed tadpoles. Since there is scarce information about these diseases, it is necessary to determine etiological agents involved, for recommending appropriate prophylactic and therapeutic measures. Viruses belonging to the Family *Iridoviridae*, genus *Ranavirus*, have been recently detected in farmed tadpoles by polymerase chain reaction. So, the objective of this study was the characterization of the diseases affecting farmed tadpoles, aiming to determine the etiological role of viruses. There were performed studies in three commercial farms located at Goiás State, including necropsy, histopathological analysis, microbiology, parasitology, and molecular studies. There were determined two different clinical patterns, one of them in young tadpoles till four weeks old, with mortality above 90% of population, etiologically related to a virus (*Ranavirus*, Family *Iridoviridae*). The second one in tadpoles reaching the pre-metamorphic period, where the presence of Gram-positive cocci was the main cause for observed lesions and clinical signs. For the first time a disease produced by iridoviruses was identified in Brazil, being an important fact for frog farming, as well as for aquaculture, considering that these infectious agents can infect other aquatic organisms from different groups.

Key words: Aquaculture, frog farming, streptococci, septicemia, virus.
1 INTRODUÇÃO

A ranicultura é uma atividade em expansão na América do Sul sendo a espécie cultivada a rã-touro Americana (*Rana catesbeiana* Shaw, 1802) introduzida no Brasil em 1935, mas as populações atualmente criadas foram originadas de 300 casais importados da América do Norte em 1970 ao Brasil (MATHIAS & SCOTT, 2004). Em decorrência do clima favorável, da excelente adaptação da rã-touro, e da tecnologia desenvolvida pelos produtores e pesquisadores brasileiros, a ranicultura constitui uma atividade importante no Brasil, particularmente no Estado de Goiás. Com o melhoramento nos conhecimentos sobre manejo e alimentação, a ranicultura transformou-se numa atividade super intensiva, com altas densidades de população e com estrita dependência dos alimentos balanceados. Entretanto, os métodos intensivos de cultivo favoreceram o aparecimento de doenças que constituem uma ameaça para a viabilidade técnica e econômica dos criatórios de organismos aquáticos (AUSTIN, 1984).

As doenças infecciosas septicêmicas em anfíbios têm características etiológicas pouco claras, devido principalmente aos sinais inespecíficos e aos achados de diversos agentes que atuam em forma conjunta, sendo na maioria das vezes, oportunistas. As bactérias incriminadas nas doenças em larvas de várias espécies de anfíbios são todas elas habitantes do ambiente e convivem de forma permanente com os animais afetados. Este fato sugere que os girinos adoecem quando causas estressantes ou debilitantes colaboram para produzir uma queda na imunidade e consequentemente a invasão pelos microrganismos presentes (GLORIOSO et al., 1974; AMBROSKY et al., 1983; GREEN et al., 2002; MAUEL et al., 2002; PASTERIS et al., 2006).

Os iridovírus que infectam animais aquáticos possuem uma distribuição mundial e estão associados a doenças severas (CUNNINGHAM et al., 1996; AHNE et al., 1998; DASZAK et al., 1999; HYATT et al., 2000; SPEARE, 2001; ZHANG et al., 2001; CHINCHAR, 2002; HE et al., 2002; MARSH et al., 2002; WENG et al., 2002; GREER et al. 2005; ROBERT et al., 2005; ZHANG et al., 2006). Os girinos têm maior suscetibilidade podendo sofrer mortalidade de até 100% da população. Por outro lado, os iridovírus podem infectar outras espécies
diferentes dentro da mesma classe taxonômica, bem como de classes diferentes (MAO et al., 1999).

Em ranários da China, ZHANG et al. (2001) isolaram agentes do gênero *Ranavirus* de girinos, rãs jovens e rãs adultas da espécie *Rana grylio*, as quais apresentavam sinais de doença e mortalidade de até 90%.

WENG et al. (2002) relataram a “doença da distensão abdominal” em girinos de criação da espécie *Rana tigrina rugulosa*, também na China. Observaram quadros clínicos com mortalidade de 95% dos girinos, os quais apresentavam abdome aumentado de tamanho, ataxia e redução da atividade. À necropsia identificaram rins, figado e baço aumentados de tamanho e com petéquias na superfície.

Objetivou-se com o presente trabalho caracterizar as doenças infecciosas em girinos de criação e verificar a participação de ranavirus como agente etiológico. Para tanto, foram realizadas pesquisas dos agentes etiológicos, a epizootiologia das doenças, a sintomatologia clínica, a anatomia patológica macroscópica, a histopatologia, a bacteriologia convencional, e a virologia, sendo esta por meio do emprego de técnicas moleculares, cultura de células e a microscopia eletrônica de transmissão.
2 MATERIAL E MÉTODOS

Foram estudados girinos criados em três ranários localizados no Estado de Goiás, dois localizados no Município de Gameleira, 150 km ao sudoeste de Brasília e um no Município de Hidrolândia, 250 km ao sudoeste de Brasília, no período de 2003 a 2005. Um dos ranários realizava exclusivamente a fase de reprodução, eclosão e cria de girinos até 30 dias de vida quando eles ainda estão no estágio 25 segundo GOSNER (1960). O outro ranário recebia girinos do anterior, dedicando-se à metamorfose e engorda de rãs. O terceiro criatório realizava todas as fases do ciclo na mesma estrutura. Todos os ranários utilizavam fontes de água superficial.

Os girinos foram alimentados com rações fareladas contendo 45% de proteína bruta, principalmente de origem animal.

A água dos tanques foi constantemente renovada e a densidade mantida na faixa de um girino por litro de água. Toda vez que um tanque de criação era esvaziado, drenava-se a água e realizava-se limpeza e desinfecção final com cloro.

2.1 Amostragem de girinos

Utilizaram-se 500 girinos de rã touro (R. catesbeiana) com sinais aparentes da doença e 100 girinos aparentemente sadios. Para fins de estudo, os girinos foram separados em dois grupos, o primeiro até os 30 dias de idade e o segundo até a metamorfose. Todos os espécimes foram transportados em sacos plásticos contendo água, e analisados imediatamente no laboratório do Centro de Pesquisa em Alimentos da Escola de Veterinária da Universidade Federal de Goiás.

Selecionaram-se preferencialmente girinos nos estágios iniciais da síndrome, não tendo sido utilizados animais mortos para evitar erros induzidos pelas alterações “pós-mortem” (NACE, 1974).

2.2 Análise Microbiológica

Uma vez sacrificados por concussão craniana e corte da medula cervical (AVMA, 1993), os exemplares foram submersos em solução de ácido
peracético a 0,2%. Após a abertura da pele e cavidade celômica, fígado, rins, baço e líquido ascítico foram retirados utilizando-se utensílios esterilizados para cada corte. As amostras foram processadas imediatamente pelos métodos de rotina (BRASIL, 2003) sendo inoculadas em caldos BHI (Brain Heart Infusion Broth), Casoy, (Tripticase Soy Broth), Glicose Azida e Selenito-Cistina. Todas as amostras foram incubadas a 30°C por 24-72 h. O período de incubação de 72 h deveu-se ao crescimento lento de alguns estreptococos, procurando-se, desta forma, dar tempo suficiente para seu desenvolvimento, tentando-se evitar a ocorrência de falsos negativos. Assim que foi observado crescimento bacteriano foram semeadas alíquotas em placas de ágar sangue contendo 5% de sangue desfibrinado de carneiro, e incubadas a 30°C por um período máximo de 72 hs, determinando-se as características hemolíticas e morfologia das unidades formadoras de colônias (UFC). As UFC isoladas e com diferente morfologia foram selecionadas para coloração de Gram e observação em microscópio de contraste de fase.

Os cocos Gram-positivos foram estudados mediante provas bioquímicas complementares. As UFC identificadas primariamente pela bioquímica como estreptococos, foram enviadas para determinação da espécie ao Aquatic Animal Health Research Laboratory em Auburn - Alabama, nos Estados Unidos. As culturas foram processadas pelo método de Identificação de ácidos graxos da membrana, FAME (Fatty Acid Methyl Ester).

Os bastonetes Gram-negativos foram incubados em placas de ágar McConkey e as UFC selecionadas inoculadas em tubos de TSI (Triple Sugar Iron Agar) e submetidas à bateria de testes bioquímicos para identificação da espécie.

Amostras de água e da ração foram analisadas periodicamente por técnicas microbiológicas convencionais para determinação de contaminação fecal e presença de cocos Gram-positivos (BRASIL, 2003).

2.3 Histopatologia

Girinos inteiros de até 30 dias de idade, ou fígado, rins e baço de girinos com mais de 30 dias, foram extraídos e preservados em formol tamponado a 10% (vol-vol) e processados segundo a rotina no laboratório de Histopatologia do Hospital das Clínicas da Universidade Federal de Goiás pelos métodos de
LUNA (1968). Os blocos parafinados foram secionados em cortes de 4-5 µ e corados com hematoxilina-eosina (H&E) para as avaliações primárias das lesões. Adicionalmente, os cortes selecionados foram também corados pelo método de Gram para visualização de bactérias em geral, pelo método de Fite para detecção de mycobactérias e coloração de PAS para visualização de fungos.

2.4 Reação em cadeia da polimerase (PCR)

Foram processados 60 girinos inteiros com até 30 dias de idade, além do fígado, rim, baço e músculo de 50 girinos na pré-metamorfose. As amostras foram preservadas em etanol a 95% ou congelados a -20°C até processamento no Laboratório de Biologia Molecular do Centro de Pesquisa em Alimentos da Escola de Veterinária da Universidade Federal de Goiás. A extração do DNA foi realizada a partir de porções de 50 mg utilizando o método do fenol/clorofórmio (SAMBROOK et al., 1989).

Foram utilizados iniciadores direcionados a regiões conservadas no genoma dos iridovírus (Quadro 1). Para o gene que codifica a proteína imediata precoce (IE) ICP-18 utilizaram-se iniciadores propostos por GALLI et al. (2006), e para o gene que codifica a proteína MCP foram utilizados iniciadores localizados nas extremidades 5´e 3´ da seqüência de FV3 (TAN et al., 2004) sendo que o iniciador “forward” é original do presente trabalho e o “reverse” já utilizado por HYATT et al. (2000) segundo é apresentado no Quadro 1.

QUADRO 1 – Iniciadores utilizados para amplificação parcial do genoma de ranavirus, “bp” indica o comprimento do amplicon.

<table>
<thead>
<tr>
<th>Nome</th>
<th>Forward</th>
<th>Reverse</th>
<th>Produto (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP</td>
<td>ATGTCTTCTGTAACCTGGTCA</td>
<td>AAAGACCCGGTTTGGCAGCAAAAC (1)</td>
<td>1483</td>
</tr>
<tr>
<td>IE</td>
<td>ATGATCCAAGCCTACCTGTCG (2)</td>
<td>AAATGTCTAATCTATACACC (2)</td>
<td>479</td>
</tr>
</tbody>
</table>

(1) HYATT et al. (2000); (2) GALLI et al. (2006).
O mix utilizado para a amplificação com os diferentes iniciadores constituía-se de 2,5 µL 10x tampão de PCR [Tris-HCl 20 mM (pH 8.4), KCl 50 mM], dNTP 200 µM, 2,5 mM MgCl₂, 2,5 µM de cada iniciador, 1 U de Taq DNA Polymerase, 5 µL de DNA template e água MilliQ até completar 50 µL para cada reação. Os produtos de amplificação foram submetidos a corrida em gel de agarose a 1%, corados com brometo de etídeo 0,5 µg/mL e visualizados em transiluminador de luz UV.

Foram também utilizados iniciadores direcionados à identificação da bactéria *Streptococcus iniae* aplicando a metodologia de PCR proposta por BERRIDGE et al. (1998). Os cocos Gram-positivos, independentemente do gênero foram purificados, sendo o DNA extraído pela metodologia do fenol/clorofórmio (SAMBROOK et al., 1989).

2.5 Microscopia eletrônica de transmissão

As amostras foram processadas no laboratório de Microscopia Eletrônica do Instituto Biológico de São Paulo. O material analisado foi selecionado a partir de lesões identificadas nas lâminas da histopatologia. Uma vez delimitada a região suspeita, a mesma foi localizada no bloco parafinado e realizado corte de aproximadamente 1 mm de diâmetro. O fragmento extraído foi desparafinado, re-hidratado e finalmente processado pela técnica de inclusão em resina, seguida de contrastação positiva de cortes ultrafinos de acordo com os procedimentos usuais de inclusão em resina, baseando-se nos métodos de LUFT, (1961) e GONZALES-SANTANDER, (1969). Os fragmentos de órgãos foram fixados em glutaraldeído a 2,5% em tampão fosfato 0,1M e pH 7,0, pós-fixados em tetróxido de ósmio a 2% em tampão fosfato 0,2M, pH 7,0, corados por acetato de uranila a 0,5%, desidratados em série cetônica crescente (50 a 100%) e incluídos em resina Spurr. Após ultra seccionamento dos blocos, os cortes ultrafinos obtidos foram corados positivamente pelo tratamento sequencial de acetato de uranila (WATSON, 1958) e citrato de chumbo (REINOLDS, 1963), antes de serem observados ao microscópio eletrônico de transmissão Philips EM 208.
2.6 Parasitologia

Estudos da pele e das guelras foram realizados a fresco em microscópio ótico mediante raspagens com lâmina de bisturi esterilizada. (REICHENBACH-KLINKE & ELKAN, 1965).
3 RESULTADOS

3.1 Epizootiologia

Em girinos jovens de até 30 dias de idade, a doença foi detectada no Estado de Goiás em todas as épocas do ano, sendo a maior frequência observada no período das chuvas, ou seja, de Novembro a Abril. A mortalidade pode atingir percentuais elevados de 90 até 100% da população total.

Verificou-se que girinos aparentemente saudáveis morriam subitamente. Em alguns casos a totalidade dos girinos de um tanque morria em 24 a 48 h. Girinos de tanques contíguos, às vezes originados na mesma desova, não apresentavam sintomas de forma simultânea. Porém, no período de uma ou duas semanas morriam quase todos os exemplares ficando no ranário só 1-2% da população inicial.

Os girinos sobreviventes continuaram seu desenvolvimento sem sinais aparentes da doença. Todavia no período prévio à metamorfose, observou-se uma síndrome caracterizada por morbidade baixa, com alta letalidade, afetando 2 a 3% da população por dia.

3.2 Evidências clínicas

O conjunto de sinais evidenciou a existência de duas formas clínicas, uma que afeta girinos jovens e outra que acomete girinos próximos à metamorfose.

3.2.1 Quadro clínico em girinos jovens

Caracterizado por surtos super agudos ou agudos com morbidade e mortalidade acima de 90% da população do ranário.

A doença acometeu principalmente girinos entre a segunda e quarta semana de vida e caracterizou-se por uma forma aguda de infecção, com aparecimento de sinais clínicos de letargia, aumento do volume abdominal de duas a três vezes o tamanho normal, ou diminuição do volume abdominal sugerindo caquexia. A morte ocorreu dentro das 24 h após observação dos sinais clínicos. Outros girinos desenvolveram forma super aguda da infecção com morte sem evidência clínica (Figura 1).
FIGURA 1 – Girinos com sintomas de infecção. a) no centro girino normal, e a esquerda e direita girinos ascíticos; b) no centro girino jovem normal, à esquerda girinos caquecticos, e à direita girinos ascíticos; c) girino na pré-metamorfose com ascite e úlcera na pele (seta), d) girino na pré-metamorfose com edema na pata.

3.2.2 Quadro clínico em girinos na pré-metamorfose

Os poucos animais que sobreviveram, continuaram seu desenvolvimento sem alterações até atingir o período da metamorfose, quando foi observada uma segunda variante da doença caracterizada por edemas nas patas, ascite e, às vezes, úlceras na pele (Figura 1), com baixa morbidade e alta mortalidade dos animais afetados.

3.3 Necropsia

3.3.1 Achados macroscópicos em girinos jovens

Observou-se um grau variável de ascite com líquido sero-hemorrágico à abertura da cavidade celômica e tonalidade pálida do fígado.
3.3.2 Achados macroscópicos em girinos na pré-metamorfose

Os girinos doentes mostraram diversos graus de lesões nos órgãos internos, mas sem padrão definido. As de maior freqüência foram aumento do volume e coloração anormal do fígado, geralmente cinzenta ou amarelada; baço aumentado de volume e com coloração pardo-escura e rins hemorrágicos.

3.4 Histopatologia

3.4.1 Achados microscópicos em girinos jovens

À microscopia os órgãos mais afetados foram os rins, seguidos pelo fígado. Nos rins, observou-se morte celular generalizada, afetando glomérulos e túbulos, com abundante picnose e cariorexia, com perda total da estrutura normal do parênquima (Figura 2A). Notou-se, também, uma marcada infiltração de eosinófilos.

No fígado os hepatócitos mostraram-se vacuolizados, com esteatose e áreas de morte celular com marcada picnose e cariorexia (Figura 2B). Notou-se um infiltrado inflamatório predominantemente mononuclear e, em algumas regiões, infiltração de eosinófilos.

Em girinos de até três semanas de idade, os cortes histológicos corados pelo método de Gram, não revelaram a presença de bactérias no parênquima dos órgãos afetados, ou na mucosa dos órgãos digestivos. Entretanto, em girinos com quatro semanas de idade foram identificados cocos Gram-positivos nas mucosas do estômago e intestino e colonização inicial de diversos tecidos. Os cortes revelaram também a presença de cocos gram-positivos no conteúdo gastro intestinal.

3.4.2 Achados microscópicos em girinos na pré-metamorfose

3.4.2.1 Achados em animais aparentemente sadios

Girinos sem sinais aparentes de doença revelaram diversos graus de lesão quando estudados histopatologicamente. Os principais órgãos afetados foram os rins e fígado. Os rins apresentaram infiltração mononuclear abundante. O fígado mostrou diversos graus de esteatose e quantidade variável de
granulomas em fases iniciais, com necrose central (Figura 2C). A coloração de Gram aplicada aos cortes histológicos dos dois órgãos revelou a presença de cocos Gram positivos.

FIGURA 2– (A) Lesão renal em girino jovem produzida por ranavírus, com perda total da arquitetura do órgão. Necrose celular com picnose e cariorexia (estrela), infiltrado mononuclear (seta larga) e aumento dos eosinófilos (seta fina preta). Coloração H&E, 200X. (B) – Lesão hepática em girino jovem produzida por ranavírus. Necrose, notando-se picnose e cariorexia, com perda da estrutura trabecular. Coloração H&E, 200X. (C) Rim de girino na pré-metamorfose mostrando acentuado infiltrado mononuclear e túbulos com abundante material hialino. Coloração H&E, 400X. (D) Fígado de girino na pré-metamorfose. Observa-se perda da estrutura trabecular do tecido hepático e a fase inicial da formação dos granulomas, com área de necrose central e infiltrado mononuclear abundante. Coloração de H&E, 200X.
3.4.2.2 Forma aguda

A maioria dos girinos apresentaram lesões por sepse, caracterizadas por resposta inflamatória múltipla e granulomas bacterianos distribuídos no parênquima dos diversos órgãos, além de áreas de necrose associadas à presença de macrófagos e grande infiltração linfocitária.

O número de focos de melanomacrófagos distribuídos no fígado foi muito reduzido e às vezes ausente. Macrófagos com cocos fagocitados foram também um achado comum no parênquima do órgão, sendo observada forte relação entre esta resposta e o aparecimento dos granulomas que mostraram regiões necróticas circundadas por macrófagos e fibroblastos. Outro achado comum foi a esteatose hepatocitária, com perda da estrutura normal do tecido, associada, por vezes, a necrose. As lesões no fígado foram mais intensas na região centrolobular que do que na região periportal.

Os rins sempre foram muito afetados, apresentando infiltração mononuclear às vezes focal e outras difusa, necrose glomerular e tubular, congestão, e granulomas. Foram observados glomérulos com espessamento da membrana basal, aumento da celularidade, desaparecimento das alças, retração, atrofia e esclerose. Foi possível observar o depósito de material hialino nos glomérulos e abundantes cilindros hialinos nos túbulos (Figura 2D). Esse tipo de lesão pode ser classificada como glomerulonefrite membranoproliferativa, evoluindo à esclerose, o que determina síndrome nefrótica seguida por insuficiência renal.

O estudo das secções pela coloração de Gram revelaram a presença de cocos Gram-positivos em grau variável associados às lesões observadas na coloração H&E. Observaram-se cocos Gram-positivos nos glomérulos e no interstício, demonstrando que os microrganismos são carregados pelo sangue, produzindo lesões e granulomas. As colorações de PAS e Fite foram negativas para a presença de fungos e micobacterias respectivamente.

Não foram identificados nos tecidos estudados corpúsculos de inclusão viral.
3.5 Microbiologia

3.5.1 Girinos jovens

As culturas a partir de amostras de tecidos ou líquido ascítico não revelaram a presença de bactérias na fase inicial dos sintomas.

Nos girinos com mais de quatro semanas, as análises bacteriológicas apresentaram resultados inespecíficos, com presença de cocos Gram-positivos dos gêneros *Streptococcus*, *Enterococcus*, *Aerococcus* e *Leuconostoc*, associados a bastonetes Gram negativos dos gêneros *Aeromonas*, *Pseudomonas*, *Citrobacter* e *Proteus*. Deve-se ressaltar que não foi detectada a presença de uma única espécie bacteriana que pudesse ser incriminada como agente causal, mas os achados sempre corresponderam a cultivos mistos.

3.5.2 Girinos na pré-metamorfose

Todos os girinos estudados foram positivos para cocos Gram-positivos de diversos gêneros, sendo que 60% deles foram positivos para *Aeromonas hydrophyla* e *Citrobacter* spp. e 35% para *Pseudomonas* spp. e *Proteus* spp. Dentre os cocos Gram-positivos, foram identificados principalmente *Streptococcus uberis*, *S. agalactie*, *S. faecalis*, *S. dysgalactiae*, e *Enterococcus* spp. Em todos os casos, os órgãos afetados com maior freqüência foram o fígado, seguido pelo rim.

Unidades formadoras de colônias não tipificadas no laboratório foram identificadas pelo FAME como *Enterococcus gallinarium*, *E. columbae*, *E. casseliflavus*, *Leuconostoc* spp. e *Aerococcus viridians*.

3.6 Reação em cadeia da polimerase (PCR)

Quando foram estudados girinos com menos de 30 dias de idade apresentando sinais típicos da doença, a PCR direcionada aos genes que codificam as proteínas MCP e IE detectou em 90% dos casos os genes alvo. Quando analisados girinos na pré-metamorfose evidenciando edemas e ascite, 10% foram positivos para o vírus.
3.7 Parasitologia

Os estudos parasitológicos revelaram a presença de parasitas da pele cujas lesões recebem o nome genérico de “opacidade contagiosa da pele”, onde o protozoário mais frequentemente encontrado foi o *Oodinum* spp.

3.8 Microscopia eletrônica de transmissão

Quando analisadas amostras de girinos até quatro semanas de idade, foram observadas partículas hexagonais completas e incompletas com a forma icosaédrica típica dos vírus da família (Figura 3). Nestes cortes observou-se a ocorrência de alterações típicas de infecção viral, com as células lisadas, as organelas todas alteradas e vazias, mitocôndrias sem cristas e núcleos disformes contendo cromatina marginalizada ou grumos de cromatina com ausência de membrana nuclear além de inclusões claras, alterações compatíveis com infecção viral.

Nos estudos das amostras de girinos na pré-metamorfose, não foram observadas inclusões nem partículas virais.

FIGURA 3 - Microscopia eletrônica de transmissão. Microfotografia de corte ultrafino de rim de girino jovem com sintomas de edema e ascite. Observam-se, no citoplasma, partículas hexagonais completas (seta) e incompletas com a forma icosaédrica típica dos vírus da família.
4 DISCUSSÃO E CONCLUSÕES

Os dados do presente estudo permitiram considerar a existência de duas síndromes diferenciadas, uma delas em girinos jovens, de até um mês de vida e outra em girinos sobreviventes, na pré-metamorfose.

4.1 Infecção em girinos jovens

A infecção em girinos jovens com menos de 30 dias de idade caracteriza-se pela ocorrência de edema e ascite de forma aguda, com índices de morbidade e mortalidade de mais de 90% da população do ranário sendo o principal agente etiológico envolvido um vírus da Família *Iridoviridae*, que segundo os produtos de PCR obtidos pertence ao gênero *Ranavirus* (GALLI et al., 2006; MAZZONI et al., dados não publicados).

O quadro clínico caracterizado por ascite e edema, com mortalidade elevada coincide com as observações de WOLF et al. (1968) em *R. catesbeiana* infectada pelo vírus do edema do girino (TEV) e de ZHANG et al. (2001) e WENG et al. (2002) para girinos de rã na China com a “doença da barriga inchada” produzidas, também, por ranavírus. Os sinais observados de edema e ascite também são indicativos da presença da lesão em nível histopatológico.

No que se refere a histopatologia, a lesão principal foi observada nos rins, com destruição quase completa do parênquima, embora o fígado também tenha apresentado importante grau de lesões. Esta preferência do vírus pelo rim foi também assinalada em estudos das lesões produzidas em *Xenopus laevis* infectadas com a espécie protótipo da família, o *Frog Virus 3*, de acordo com GANTRESS et al. (2003). Não foram observadas petéquias nos órgãos afetados, o que difere dos achados de WOLF et al. (1968) e WENG et al. (2002).

A ausência de corpúsculos de inclusão viral nos cortes histológicos estudados estão em concordância com os achados de WILLIAMS et al. (2005). Esses autores verificaram que os ranavírus não produzem este tipo de corpúsculos nos tecidos infectados, sendo que os locais de replicação viral encontram-se dispersos no citoplasma da célula afetada, sem uma membrana envolvente.
Torna-se relevante assinalar que não foi detectada a presença de bactérias acompanhando as lesões nestes girinos. Ao contrário, estes girinos apresentaram constantemente reações positivas para ranavírus nos testes de PCR.

Pela primeira vez foi identificada uma doença produzida por iridovirus no Brasil, sendo um achado de importância para a ranicultura, e também para a aquicultura em geral, tendo em vista que estes agentes têm a capacidade de acometer outros grupos de organismos aquáticos.

4.2 Infecção em girinos na pré-metamorfose

Girinos que sobrevivem à infecção podem desenvolver um segundo quadro clínico menos grave, que cursa com edemas nas patas, ascite e, às vezes, úlceras na pele. Apresentam baixa morbidade e alta mortalidade.

Os estudos histopatológicos revelaram danos menos severo nos rins e fígado, principais órgãos afetados. O tipo de lesão encontrado é caracterizado por necrose e degeneração com abundantes granulomas e infiltração mononuclear linfocitária. Na coloração de Gram observou-se abundante presença de cocos Gram-positivos associados às lesões descritas. Nota-se a penetração de cocos Gram-positivos na mucosa do estômago, os quais são transportados pela via sanguínea iniciando assim uma colonização de outros órgãos internos.

Este tipo de lesão granulomatosa têm sido descrito não só associado às lesões estreptocócicas bem como a outras bactérias que sobrevivem à fagocitose. Os macrófagos que fagocitam agentes de elevada resistência, são responsáveis pelo início de reações inflamatórias localizadas. O desenvolvimento desses microrganismos, com conseqüente reação imune, dá origem às lesões granulomatosas características das infecções crônicas (AGIUS & ROBERTS, 2003).

O quadro de lesão estreptocócica coincide com os achados descritos em criações de trutas, (ELDAR et al., 1995; AKHLAGHY et al., 1996; ELDAR et al., 1997; CHANG et al., 2002; DILER et al., 2002; BACHRACH et al., 2003), linguados, (TORANZO et al., 1995; ROMALDE et al., 2000), bagres

Não foi possível, nas condições deste estudo, determinar a causa primária que antecede a invasão dos tecidos pelos estreptococos. A ação dos ranavírus nas etapas iniciais dos girinos pode ter sido um fator desencadeante, atuando isoladamente ou associado a fatores ambientais relacionados ao manejo e, principalmente, a uma alimentação desbalanceada. A metamorfose constitui um período de acentuado estresse, portanto, parece lógico pensar que girinos debilitados podem morrer ao longo do processo. Do equilíbrio entre a resposta imune, a presença dos microrganismos, e o grau de lesão pré-existente nos diversos tecidos, surge a severidade da doença neste período específico. Estas afirmações estão em concordância com aquelas já assinaladas, mencionando que os girinos adoecem quando causas estressantes ou debilitantes colaboram para produzir queda na imunidade e conseqüente invasão pelos microrganismos presentes (GLORIOSO et al., 1974; AMBROSKY et al., 1983; GREEN et al., 2002; MAUEL et al., 2002; PASTERIS et al., 2006).

A presença de diversas espécies sem a determinação de um patógeno permanente ou constante, indica o caráter secundário da infecção. Porém, o papel dos cocos não pode ser descartado na evolução da doença e, portanto, devem ser levados em conta nos planos de controle sanitário dos ranários comerciais.

Não foram associados agentes virais às mortes de girinos nesta fase. As lesões identificadas na histopatologia, diferem daquelas descritas para os ranavírus, e nos estudos de PCR só 10% dos girinos estudados foram positivos para esses vírus. Estes resultados indicam que o papel dos vírus nos quadros de mortalidade em girinos na pré-metamorfose não é fundamental. Os achados da histopatologia sugerem que a patogênese do quadro seja de lesão estreptocócica secundária. Após ação primária do vírus, os estreptococos penetram através das paredes dos órgãos digestivos e colonizam diversos tecidos, iniciando assim, o processo de infecção, formação de granulomas e septicemia. O papel do vírus na depleção imunitária que habilita a penetração das bactérias, não foi determinado, mas poderia ser uma das causas envolvidas.
Nas descrições realizadas para epizootiologia e patogenia dos *Ranaviurs*, tem sido feita referência à maior susceptibilidade dos girinos mais jovens às infecções por estes agentes (WOLF et. al., 1968; GRANOFF et al., 1969; JANCOVICH et al., 1997; HYATT et al., 2000; CULLEN & OWENS, 2002) e estudos avaliando as respostas imunes em anfíbios corroboram estes resultados (GANTRESS et al., 2003).

A presença de parasitas do gênero *Oodinum* na pele dos girinos estudados pode ser considerada uma conseqüência do estado geral dos anfíbios, sendo secundária às infecções descritas acima.
9 REFERÊNCIAS

11. CHANG, P.; LIN, P.; LEE, Y. *Lactococcus graviiae* infection of cultured rainbow trout, (*Oncorhynchus mikiss*) in Taiwan and associated biophysical characteristics
and histopathology. **Bulletin of the European Association of Fish Pathologists.**

16. DILER, O.; ALTUN, S.; ADILOGLU, A.; KUBILAY, A.; ISIKLI, B. First occurrence of Streptococcosis affecting framed rainbow trout, (**Oncorhynchus mikiss**) in Turkey. **Bulletin of the European Association of Fish Pathologists.**

CAPÍTULO 4
QUADROS INFECCIOSOS EM RÃS DE CRIAÇÃO (*Rana catesbeiana* Shaw, 1802) NA FASE PÓS-METAMÓRFICA EM RANÁRIOS COMERCIAIS.

RESUMO

Doenças com alta mortalidade têm sido comuns em todos os ranários. Apesar dos numerosos trabalhos realizados, existe ainda desconhecimento dos agentes etiológicos envolvidos, e principalmente do papel dos vírus. Objetivou-se com o presente trabalho realizar a caracterização dos processos infecciosos em rãs de criação, dando ênfase à participação etiológica dos ranavírus. Um ranário comercial do Estado de Goiás foi utilizado para estudos clínicos e obtenção de amostras para análises complementares que envolveram necropsia, análises histopatológicas, microbiológicas, moleculares e demicroscopia eletrônica de transmissão. Foram identificados quatro quadros diferentes, subclínico, super agudo, agudo e crônico. No quadro subclínico os animais não apresentaram sinais clínicos evidentes. Nos casos agudos predominaram sintomas inespecíficos como apatia, edemas e, às vezes, manifestações nervosas. As lesões atingiram diversos órgãos internos, com predominância no fígado, rins e baço. Necrose, degeneração e granulomas, associados à presença de cocos Gram-positivos constituíram os achados de maior significância na histopatologia. No quadro crônico as rãs apresentaram-se debilitadas e com sintomas nervosos evidentes. As lesões neste quadro se assemelharam àquelas do quadro agudo, sendo mais graves e incluindo, em todos os casos, alterações no sistema nervoso central. Os quadros observados foram identificados como septicemias estreptocócicas secundárias. Foi descartado o papel dos vírus na produção dos sinais clínicos e lesões macro e microscópicas encontradas nesta fase da criação.

Palavras chave: Aqüicultura, estreptococos, ranicultura, septicemias.
ABSTRACT

Disease outbreaks with high mortality have been frequent events in all frog farms. In spite of several papers been published on this issue, there is still a lack of knowledge about etiological agents involved, and mainly the role of virus in adult frog diseases. The goal of this study was a primary characterization of farmed frog diseases, stressing on the determination of an eventual viral etiology. Clinical observations, as well as frog sampling for necropsy, histopathology, microbiology, molecular studies and transmission electron microscopy were performed at a frog farm from Goiás State. Four different syndromes were identified: sub clinical, super-acute, acute and chronic. The sub clinical syndrome showed no evident disease signs. Both acute syndromes showed mainly non-specific symptoms like apathy, edemas and nervous signs. Several internal organs were affected, mostly liver, kidney and spleen. Most common histopathological findings were necrosis, degeneration and granulomas, in association with Gram-positive. On the chronic syndrome frogs were weak, with evident nervous symptoms. Lesions resemble those found at the acute syndrome but with more severe pattern, including, in all cases, central nervous system disorders. The disease was characterized as secondary streptococcal septicemia. No viral role was detected in the disease.

Key words: Aquaculture, frog farming, septicemia, streptococci.
1 INTRODUÇÃO

Com os avanços no conhecimento sobre manejo e alimentação, a ranicultura transformou-se numa atividade intensiva, com altas densidades de população e estrita dependência dos alimentos balanceados artificiais fatores que produzem estresse e consequentemente maior susceptibilidade a doenças de diversas etiologias (ROTTMAN et al., 1992).

Sendo a ranicultura uma atividade nova, a experiência do estudo científico com as doenças em rãs de criação ainda é incipiente. Diversos trabalhos nas últimas décadas foram direcionados principalmente para a identificação dos agentes envolvidos em surtos ou em episódios de mortalidade maior que a esperada, seja na fase de girino ou adulta (AMBROSKY et al., 1983; HIPÓLITO et al., 1987; GUIMARAES et al., 1988; HIPÓLITO et al., 1988a, b, c; HIPÓLITO, 1995; FIORIO et al., 1997; HIPÓLITO, 1997; HIPÓLITO et al., 1997; HIPÓLITO, 1999; HIPÓLITO, 2002; MAUEL et al., 2002; HIPÓLITO et al., 2003; PASTERIS et al. 2006). Os diagnósticos concentraram-se exclusivamente na identificação de agentes parasitários e bacterianos, não sendo realizado acompanhamento dos surtos, no intuito de estabelecer o papel etiológico dos agentes detectados e de outros aspectos das doenças que permitam a elaboração de medidas de prevenção ou controle. Segundo HIPÓLITO (2002), a
maioria dos trabalhos consistiram em comunicados efêmeros, não tendo continuidade no estudo do caso.

As septicemias têm sido reportadas como a causa mais importante de mortalidade em anfíbios, sendo frequente o achado de animais mortos sem sinais prévios (CRAWSHAW, 1994). Porém, existe ainda um certo grau de incerteza em relação às características desta infecção. Nos estudos e publicações realizados no período compreendido entre o final do século XIX e o ano 1995, a maioria dos trabalhos de diagnóstico identificou bactérias como responsáveis pelos surtos. Estes estudos incluíram uma patologia denominada de “perna vermelha” ou “red leg”, considerada como um complexo microbiológico ou síndrome sendo apontada como a doença de maior importância em anfíbios (RUSSEL, 1898; EMERSON & NORRIS, 1905; KULP & BORDEN, 1942; MILES, 1950; REICHENBACH-KLINKE & ELKAN, 1965; GIBBS et al., 1966; GLORIOSO et al., 1974; VAN DER WAAIJ et al., 1974; COSGROVE, 1980; HIRD et al., 1981; NYMAN, 1986; VIZOTTO, 1988).

As pesquisas assinalando a importância da síndrome da perna vermelha ainda continuam na bibliografia mais recente (SOMSIRI, 1994; MAUEL et al., 2002; HADFIELD et al., 2005; PASTERIS et al., 2006). Porém, CUNNINGHAM et al. (1996), têm atribuído às bactérias papel secundário, e responsabilizado os vírus da família Iridoviridae, gênero Ranavirus como os verdadeiros agentes etiológicos.

As primeiras suspeitas do envolvimento de vírus pertencentes à Família Iridoviridae, gênero Ranavirus foram levantadas a partir de observações em ranários do Uruguai (MAZZONI, 2000a, b; MAZZONI & CARNEVIA, 2000) e confirmadas pelo trabalho de detecção por reação em cadeia da polimerase (GALLI et al., 2006). HIPÓLITO et al. (2003) realizaram estudo empregando a técnica de microscopia eletrônica de transmissão e detectaram partículas virais semelhantes aos grupos Herpesvírus, Togavírus e Paramixovírus em rãs criadas comercialmente no Brasil, mas não foram vinculadas a nenhuma doença. Também não foram detectados no citado estudo, agentes da Família Iridoviridae.

Os vírus das rãs, particularmente aqueles do gênero Ranavirus, têm sido identificados tanto em doenças de anfíbios na natureza, bem como em cativeiro (ZUPANOVIC et al., 1998; DASZAK et al., 1999, 2000, 2003; CHINCHAR & MAO, 2000; DASZAK et al., 2000; HYATT et al., 2000; ZHANG et al., 2001;
CHINCHAR, 2002; CULLEN & OWENS, 2002; GREEN et al., 2002; HE et al., 2002; KIM et al., 2002; MARSH et al., 2002; WENG et al., 2002; DASZAK et al., 2003; GANTRESS et al., 2003; JANCOVICH et al., 2003; GREER et al. 2005; ROBERT et al., 2005; ZHANG et al., 2006). Porém existem dúvidas em relação à patogenicidade destes agentes em rãs adultas da espécie *Rana catesbeiana*, pois foram detectados tanto em anfíbios sadios como em doentes (WOLF et al., 1968) além de ter sido detectados em outras espécies de anfíbios (ZUPANOVIC et al., 1998; ZHANG et al., 2001; GANTRESS et al., 2003, GREER et al. 2006).

Fato semelhante está ocorrendo com uma doença emergente produzida pelo fungo *Batrachochytrium dendrobatidis* que tem sido implicada com muita frequência em surtos de mortalidade e redução de populações ao redor do mundo (BERGER et al., 1998, 1999; DASZAK et al., 1999; LONGCORE et al., 1999; SPEARE & BERGER, 2000; MAZZONI, 2000a, b; BERGER et al., 2002; GUAYASAMIN et al., 2002; MAZZONI et al., 2003; SPEARE, 2003; HANSELMANN et al., 2004; BLAUSTEIN & DOBSON, 2006). O fungo tem sido identificado na América do Sul, Equador (BERGER et al., 1999; RON & MERINO, 2000), Venezuela, (GUAYASAMIN et al., 2002; BONACCORSO et al., 2003; HANSELMAN et al., 2004), Uruguai (MAZZONI, 2000a, b; MAZZONI et al., 2003), Argentina (HERRERA et al., 2005) e Brasil (CARNAVAL et al., 2006). Apenas no Uruguai, o diagnóstico foi realizado em rãs de criação da mesma espécie cultivada no Brasil. Esse fato reveste-se de grande interesse pois existe a possibilidade do aparecimento da doença nas rãs brasileiras.

Outros fungos pertencentes ao clado *Mesomycetozoa* tem sido também implicados em doenças de anfíbios na natureza (GREEN et al., 2002).

As dificuldades e a escassez de diagnósticos etiológicos, o achado de várias espécies bacterianas em forma conjunta, geralmente todas elas pertencentes à flora normal, o desconhecimento do papel dos vírus, os quadros clínicos inespecíficos e como consequência, a falta de conhecimento acerca de medidas profiláticas e terapêuticas apropriadas, levaram à realização do presente trabalho.

Considerando a importância adquirida pelos vírus do gênero *Ranavirus* como agentes etiológicos de doenças em anfíbios, peixes e répteis, propôs-se o presente trabalho com o objetivo de realizar a caracterização dos processos
infecciosos em rãs de criação, dando ênfase à participação etiológica dos ranavírus. Para tanto, foram realizadas pesquisas dos agentes etiológicos, a epizootiologia das doenças, a sintomatologia clínica, a anatomia patológica macroscópica, a histopatologia, a bacteriologia convencional, e a virologia, sendo esta por meio do emprego de técnicas moleculares, cultura de células e a microscopia eletrônica de transmissão.
2 MATERIAL E MÉTODOS

O presente estudo se refere a surtos de uma doença ocorridos durante quatro anos consecutivos, de 2002 até 2005. Apesar da doença ter sido reportada em quase todos os ranários do Brasil, a descrição aqui apresentada baseou-se fundamentalmente nas observações realizadas em um ranário localizado no Município de Hidrolândia, Estado de Goiás. Aloja constantemente um milhão de girinos e 400.000 rãs. As rãs, logo após a metamorfose, foram confinadas em baias de concreto de seis m² localizadas em galpões fechados. Quando alcançaram aproximadamente 50 g foram transferidas para novas baias de 12 m². Todas as baias possuíam uma piscina de cinco cm de profundidade que ocupava 20% da superfície total. A água foi obtida a partir de uma represa de 20 hectares alimentada por várias nascentes. A represa possuía uma variada população de peixes, bem como répteis, outras espécies de anfíbios e aves.

As rãs foram alimentadas duas vezes por dia com ração artificial extrusada contendo 45% de proteína bruta. Somente as rãs após a metamorfose receberam como complemento 5% de larvas de mosca doméstica, produzida no próprio ranário, por um período de 21 dias para estimular o consumo da ração.

Outras práticas de manejo incluíram a eliminação diária do alimento úmido não consumido e dos animais mortos. A água das piscinas era constantemente renovada, e drenada completamente uma vez ao dia, juntamente com os sedimentos das fezes. A baia inteira era lavada pelo menos duas vezes na semana. Periodicamente as rãs eram submetidas a um processo de triagem para manter os tamanhos uniformes e reduzir o canibalismo. A densidade foi mantida na faixa de 150 rãs por m² durante a fase inicial, até diminuir para 40 por m² na etapa de terminação. Toda vez que uma baia era esvaziada, a água era drenada e realizava-se uma limpeza e desinfecção final com cloro.

2.1 Amostragem das rãs

Os animais doentes utilizados no presente estudo originaram de um ranário localizado no Município de Hidrolândia. O grupo controle foi constituído por rãs sem sintomas aparentes oriundas de ranários localizados nos Estados do
Pará, Goiás, Maranhão e Mato Grosso. Um total de 1155 rãs doentes e 75 sadias foram utilizadas no presente estudo.

Os exemplares machos e fêmeas foram distribuídos em três categorias de 410 anfíbios cada: 1) Rãs pós-metamorfose; 2) Rãs jovens, de 20 até 80 g; e 3) Rãs adultas. Foram selecionadas preferencialmente rãs nos estágios iniciais do processo infeccioso, à exceção das rãs que apresentaram quadro crônico. Animais mortos não foram utilizados para evitar erros induzidos pelas alterações pós-mortem, principalmente em relação aos resultados das análises microbiológicas, segundo recomendações do NACE (1974).

As rãs foram sacrificadas mediante o emprego de clorofórmio (SPEARE, 1989) ou insensibilizadas por concussão craniana e sacrificadas por meio de corte da medula cervical (AVMA, 1993).

2.2 Microbiologia

Uma vez sacrificados os exemplares foram submersos em solução de ácido peracético a 0,2%. Após abertura da pele e da cavidade celômica, fígado, rins, baço, pulmões, coração e cérebro foram extraídos assepticamente. As amostras foram processadas imediatamente no laboratório de bacteriologia do Centro de Pesquisa em Alimentos da Escola de Veterinária da Universidade Federal de Goiás, sendo inoculadas em caldos BHI (Brain Heart Infussion Broth), Casoy (Tripticase Soy Broth), Glicose Azide e Selenito-Cistina, segundo os métodos rotineiros (BRASIL, 2003). Todas as amostras foram incubadas a 30°C por 24-72 h. O período de 72 horas deveu-se ao crescimento lento de alguns estreptococos, e procurou-se de esta forma propiciar um tempo suficiente para o desenvolvimento, evitando a ocorrência de falsos negativos. Assim que foi observado crescimento bacteriano foram semeadas alíquotas em placas de ágar sangue contendo 5% de sangue desfibrinado de carneiro, e incubadas a 30°C, determinando-se as características hemolíticas e morfologia das colônias-UFC. As UFC isoladas, com diferente morfologia, foram selecionadas para coloração de Gram, observação em microscópio de contraste de fase, e identificação mediante provas bioquímicas complementares. Os cocos Gram-positivos foram estudados mediante provas bioquímicas complementares. As UFC identificadas primariamente pela bioquímica como estreptococos, foram enviadas para
determinação da espécie ao Aquatic Animal Health Research Laboratory em Auburn - Alabama, nos Estados Unidos. As culturas foram processadas pelo método de Identificação de ácidos graxos da membrana, FAME (Fatty Acid Methyl Ester).

Os bastonetes Gram-negativos foram incubados em placas de ágar McConkey e as UFC selecionadas inoculadas em tubos de TSI (Triple Sugar Iron Agar) para finalmente serem submetidas à bateria de testes bioquímicos para identificação da espécie (BRASIL, 2003).

Amostras de água e da ração foram analisadas periodicamente por técnicas microbiológicas convencionais para determinação de contaminação fecal (BRASIL, 2003) e presença de cocos Gram-positivos como descrito anteriormente.

2.3 Histopatologia

Fragmentos de figado, rins, baço, estomago, pulmões, coração e cérebro foram extraídos e preservados em formol tamponado a 10% (vol-vol) e processados segundo a rotina de estudos de histopatologia no laboratório de Histopatologia do Hospital das Clínicas da Universidade Federal de Goiás, utilizando as técnicas propostas por LUNA (1968). Os blocos parafinados foram seccionados em cortes de 4-5 µ e corados com hematoxilina-eosina (H&E) para as avaliações primárias das lesões. Adicionalmente, os cortes selecionados foram também corados pelo método de Gram para visualização de bactérias em geral, pelo método de Fite para detecção de micobacterias e coloração de PAS para visualização de fungos.

2.4 Reação em cadeia da polimerase (PCR)

Fragmentos de figado, rim, baço e músculo foram preservados em etanol a 95% ou congelados a -20°C até processamento no laboratório de Biologia Molecular do Centro de Pesquisa em Alimentos da Escola de Veterinária da Universidade Federal de Goiás. A extração do DNA foi realizada a partir de porções de 50 mg utilizando o método do fenol/clorofórmio (SAMBROOK et al., 1989). Foram utilizados iniciadores direcionados a regiões conservadas no genoma dos iridovírus (Quadro 1). Para o gene que codifica a proteína imediata
precoce (IE) ICP-18 utilizaram-se iniciadores propostos por GALLI et al. (2006), e para o gene que codifica a proteína MCP foram utilizados iniciadores localizados nas extremidades 5’ e 3’ da sequência de FV3 (TAN et al., 2004) sendo que o iniciador “forward” é original do presente trabalho e o “reverse” já utilizado por HYATT et al. (2000) segundo é apresentado no Quadro 1.

QUADRO 1 – Iniciadores utilizados para amplificação parcial do genoma de ranavirus, “bp” indica o comprimento do amplicon.

<table>
<thead>
<tr>
<th>Nome</th>
<th>Forward</th>
<th>Reverse</th>
<th>Produto (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP</td>
<td>ATGTCTTCTGTAACCTGGTCA</td>
<td>AAAGACCCGTGTTTGCAGCAAC (1)</td>
<td>1483</td>
</tr>
<tr>
<td>IE</td>
<td>ATGATCCAAGCCTACCTGTGC (2)</td>
<td>AAATGTCCTAATCTATACACC (2)</td>
<td>479</td>
</tr>
</tbody>
</table>

(2) HYATT et al. (2000); (2) GALLI et al. (2006).

O mix utilizado para a amplificação com os diferentes iniciadores constituía-se de 2,5 µL 10x tampão de PCR [Tris-HCl 20 mM (pH 8.4), KCl 50 mM], dNTP 200 µM, 2,5 mM MgCl₂, 2,5 µM de cada iniciador, 1 U de Taq DNA Polymerase, 5 µL de DNA template e água MilliQ até completar 50 µL para cada reação. Os produtos de amplificação foram submetidos a corrida em gel de agarose a 1%, corados com brometo de etídeo 0,5 µg/mL e visualizados em transiluminador de luz UV.

Foram também utilizados iniciadores direcionados à identificação da bactéria Streptococcus iniae aplicando a metodologia de PCR proposta por BERRIDGE et al. (1998). Os cocos Gram-positivos, independentemente do gênero foram purificados, sendo o DNA extraído pela metodologia do fenol/clorofórmio (SAMBRocket et al., 1989).
2.5 Microscopia eletrônica de transmissão

As amostras foram processadas no laboratório de Microscopia Eletrônica do Instituto Biológico de São Paulo. O material analisado foi selecionado a partir de lesões identificadas nas lâminas da histopatologia. Uma vez delimitada a região suspeita, a mesma foi localizada no bloco parafinado e realizado corte de aproximadamente 1 mm de diâmetro. O fragmento extraído foi desparafinado, reidratado e finalmente processado pela técnica de inclusão em resina, seguida de contratação positiva de cortes ultrafinos de acordo com os procedimentos usuais de inclusão em resina, baseando-se nos métodos de LUFT, (1961) e GONZALES-SANTANDER, (1969). Quando utilizamos esta técnica, os fragmentos de órgãos são fixados em glutaraldeído a 2,5% em tampão fosfato 0,1M e pH 7,0, pós-fixados em tetróxido de ósmio a 2% em tampão fosfato 0,2M, pH 7,0, corados por acetato de uranila a 0,5%, desidratados em série cetônica crescente (50 a 100%) e incluídos em resina Spurr. Após ultra seccionamento dos blocos, os cortes ultrafinos obtidos foram corados positivamente pelo tratamento seqüencial de acetato de uranila (WATSON, 1958) e citrato de chumbo (REINOLDS, 1963), antes de serem observados ao microscópio eletrônico de transmissão Philips EM 208.

2.6 Proteínas séricas totais

Visando avaliação primária das funções hepática e renal foi realizado um estudo eletroforético das proteínas totais no soro das rãs, comparando 30 exemplares para cada um dos quadros clínicos observados: rãs sadias, rãs na fase aguda dos sintomas e rãs na fase crônica. O sangue foi coletado diretamente do coração, deixando-o coagular a temperatura ambiente dentro da seringa. As seringas foram acondicionadas em caixa de material isotérmico contendo gelo e transportadas ao laboratório. Extraiu-se o soro e centrifugou-se a 5000 rpm por 15 minutos. O sobrenadante foi retirado e congelado a – 20°C até o uso. Fez-se a eletroforese em SDS-PAGE, pelo método de LAEMILLI (1970).

2.7 Pesquisa do fungo Batrachochytrium dendrobatidis

A pele das rãs foi amostrada realizando-se raspagens nas regiões ventrais do abdômen e dos membros posteriores com bisturi esterilizado. O
material obtido foi colocado sobre uma lâmina de vidro, corado com uma mistura de KOH 10% e azul de algodão em proporções de 50:50 (vol-vol) e coberto por lamínula para observação em microscópio óptico, segundo descrição de MAZZONI et al. (2003).

2.8 Reprodução da Doença

No intuito de comprovar a patogenicidade primária dos agentes isolados, culturas puras obtidas dos animais doentes foram inoculadas em rãs aparentemente sadias. UFC com, no máximo dois repiques no laboratório foram diluídas segundo a escala de Mac Farland em concentrações crescentes de 10³ até 10¹⁰ UFC por mL e inoculadas nas rãs por via intra peritoneal. Nove grupos de 30 rãs sadias, de igual peso e idade, foram colocados em baias separadas para cada teste realizado. Oito grupos receberam cada um deles um inoculo de 1.0 mL da concentração correspondente de bactérias, e o nono grupo 1.0 mL de solução salina tamponada (PBS). O mesmo procedimento foi realizado utilizando uma mistura de todas as bactérias isoladas, testando-se desta forma a possibilidade de uma ação conjunta dos agentes envolvidos.

Macerados de órgãos obtidos de rãs com sintomatologia aguda foram também aplicados pela via intraperitoneal nos exemplares do experimento visando observar os resultados da aplicação conjunta dos diversos agentes envolvidos. Os testes foram realizados a partir de figado, rins e cérebro. Os tecidos foram macerados, diluídos em PBS e 1 mL do sobrenadante foi inoculado em cada rã. Nesse caso, grupos de 10 animais sadios foram utilizados, bem como um grupo controle inoculado com PBS.
3 RESULTADOS

Observou-se a existência de quatro diferentes formas de apresentação do processo infeccioso. A primeira, inaparente ou subclínica, onde os sinais clínicos não são evidentes, mas em nível microscópico foram detectadas lesões moderadas acompanhadas da presença de cocos Gram-positivos. A segunda, super aguda, que lembra a síndrome de choque tóxico ou choque séptico. A terceira, aguda, com sintomatologia inespecífica, decorrente de lesões de tipo necrótico-degenerativas, associadas a presença de cocos Gram-positivos e septicemia. A quarta, crônica, onde os animais apresentaram-se caquécticos e predominaram os sinais nervosos.

Não foram observadas diferenças entre as três categorias de rãs que justificasse a descrição em separado do processo infeccioso. Nesse contexto, são apresentados os resultados relevantes obtidos para cada uma das quatro formas de apresentação da infecção.

3.1 Epizootiologia

A enfermidade pode aparecer repentinamente na forma aguda espalhando-se pelo criatório inteiro ou permanecer na forma latente, com baixa morbidade e mortalidade, podendo aumentar a severidade ao longo do ano. Merece destaque o fato de que durante o período mais frio a morbidade e a mortalidade foram menores, mas quando a temperatura voltou a subir, a doença recrudescer. A doença acometeu rãs em todas as fases, desde a pós-metamorfose até animais no ponto de abate. Observou-se que as rãs afetadas geralmente apresentavam boas condições de desenvolvimento.

3.2 Sinais Clínicos

Os sinais clínicos de doença septicêmica em rãs de criação podem ser considerados pouco específicos e evidenciam-se pouco tempo antes da morte. Porém, existe reduzido número de rãs que consegue sobreviver, mas permanece com sintomas crônicos de tipo neurológico. Foram caracterizadas três formas clínicas diferentes.
3.2.1 Forma sub-clínica ou inaparente

Os animais permaneceram sem sinais aparentes da doença e com comportamento normal (Figura 1A) até os momentos que antecederam a morte. Um percentual variável de rãs não evidenciou sinais da doença alcançando a fase de abate ou tornando-se reprodutor.

3.2.2 Forma aguda

Nas baias afetadas observou-se um padrão definido de rãs com sintomas da doença e animais mortos. Não foram evidenciados sinais prévios que pudessem indicar que uma determinada rã estivesse doente.

Os sinais clínicos incluíram: modificações da postura normal, depressão, diminuição da reação aos estímulos externos (Figura 1B), edemas, ascite, bem como pulmões insuflados que assemelham ao aspecto de balão, responsáveis pelo aumento da pressão interna que pode provocar prolapse retal (Figura 1C), sintomas nervosos de incoordenação, natação errática e diversos graus de curvatura da coluna vertebral o que leva ao desvio da cabeça para um dos lados (Figura 1D).

Em alguns casos, a alta mortalidade dizimou, em curto período de tempo, 90% das rãs. Nas rãs que morreram observou-se perda de movimentos, postura de cabeça baixa, seguida por estado tipo comatoso, ou convulsivo e quadro tetânico caracterizado pelos membros estendidos. Eventualmente observou-se vômito sanguinolento no momento da morte acompanhado de um som forte e agudo. Não foram observadas hemorragias na pele nem ulcerações. Quando as rãs foram colhidas imediatamente após a morte, não se observou nenhuma coloração vermelha na pele. Evidenciou-se a característica aguda ou super aguda do aparecimento dos sinais e, conseqüentemente, o óbito dos animais que podia acontecer em um curto período de tempo. Notou-se à necropsia que as rãs se alimentavam até o aparecimento dos sinais clínicos. O quadro fatal assemelhou-se às descrições realizadas para o choque séptico em outras espécies animais incluindo o homem.
3.2.3 Forma crônica

Entre 0,1 a 0,5% da população desenvolveu um quadro crônico caracterizado clinicamente pelas seqüelas nervosas. Foram achados comuns nestes animais a falta de coordenação, posturas anormais como lordose e diversos graus de escoliose levando ao desvio da cabeça para um dos lados indistintamente. Alguns deles tinham dificuldades para manterem-se na posição normal, nadar ou pular. Algumas rãs, apesar dos sintomas assinalados conseguiam se alimentar e continuavam crescendo lentamente. Poucas recuperavam a condição normal sem algum tipo de tratamento.

FIGURA - 1 (A) Rã sadia em posição normal. (B) Rã com sintomas iniciais da doença. Posição anormal do corpo com a cabeça voltada para baixo, apatia e falta de reação aos estímulos externos. (C) Rã com sintomatologia aguda, pulmões insuflados, com aumento da pressão interna e prolapso retal. (D) Rã com sintomas nervosos de incordenação e postura anormal com nado errático.
3.3 Achados de necropsia

3.3.1 Rãs sadias

Diversos graus de alteração hepática foram observados, principalmente aumento de tamanho associado a colorações anormais, sendo as mais comuns as amareladas ou em noz-moscada.

3.3.2 Rãs sem sintomas, forma sub-clínica ou inaparente

Os animais sem sintomas aparentes exibiam diversos graus de lesão tissular, independentemente da idade, incluindo rãs recentemente metamorfoseadas. Macroscopicamente, os órgãos mais afetados na observação foram fígado, rins e baço. O fígado mostrou diversos graus de pigmentação anormal, desde colorações pardo escuras a quase preto, bem como tons acinzentados ou amarelados. O baço mostrou-se aumentado de tamanho e às vezes de cor pardo-escura. Os rins apresentaram-se congestos ou hemorrágicos.

3.3.3 Forma aguda

Nas rãs doentes observou-se diversos graus de lesão nos órgãos internos, mas sem um padrão definido. As alterações mais frequentes foram o aumento do tamanho do fígado além de coloração anormal, geralmente acinzentada ou amarelada, baço com aumento de tamanho e coloração pardo-escura, e rins hemorrágicos. Às vezes, pequenos nódulos esbranquiçados foram observados na superfície do fígado e baço e coração. Algumas rãs tinham os pulmões insuflados, cheios de ar, o que proporcionava ao corpo o aspecto de balão, levando ao aumento da pressão interna e ao prolapse retal. À necropsia, observaram-se algumas rãs com pulmões fortemente hemorrágicos e grau variável de ascite com exsudato sero-hemorrágico. A maioria dos animais apresentou o tubo digestivo contendo alimento, incluindo o estomago e o duodeno. O corpo adiposo apresentava características normais.
3.3.4 Forma crônica

Esta foi a única fase da doença na qual as rãs apresentaram perda de peso de moderada a intensa. O fígado mostrou-se às vezes pálido ou muito escuro, o baço exibia aumento de volume e os rins apresentavam-se hemorrágicos. Os corpos adiposos exibiam menor tamanho que aqueles das rãs sadias e das rãs com síndrome aguda.

3.4 Histopatologia

3.4.1 Forma subclínica ou inaparente

Rãs sem sinais aparentes da doença revelaram diversos graus de lesão nos estudos histológicos, independentemente da idade. Os principais órgãos afetados foram o rim e o fígado. Enquanto o fígado mostrou diversos graus de esteatose e uma quantidade variável de granulomas em suas fases iniciais (Figura 2), os rins apresentaram infiltração mononuclear abundante e alguns túbulos esclerosados. A coloração de Gram aplicada aos cortes revelou a presença de cocos Gram-positivos (Figura 2).

3.4.2 Forma aguda

Um quadro de lesões septicêmicas foi constatado na maioria das rãs estudadas. Fígado, rins, baço, coração, pulmões e cérebro foram afetados em grau variável de severidade. Uma resposta inflamatória focal múltipla e granulomas bacterianos foram observados distribuídos no parênquima dos diversos órgãos e nas serosas das vísceras. Áreas de necrose associadas à presença de macrófagos e uma grande infiltração linfocitária foram identificadas na maioria dos tecidos (Figura 3). O número de focos de melanomacrófagos distribuídos no fígado foi muito reduzido e, às vezes, ausente por completo. Macrófagos, contendo em seu interior cocos fagocitados, constituiu um achado comum no parênquima do fígado, e notou-se forte relação entre esta resposta e o aparecimento dos granulomas. Estes mostraram regiões necróticas rodeadas por macrófagos e fibroblastos (Figura 3). A esteatose hepatocitária com perda da estrutura normal do tecido associada a necrose foi outro achado comum. As
lesões hepáticas foram de maior gravidade na região centrolobular do que na região periportal.

Os rins sempre foram muito afetados, apresentaram infiltração mononuclear, necrose glomerular e tubular, congestão e granulomas. Foram observados glomérulos com espessamento da membrana basal, desaparecimento das alças, retração, atrofia e esclerose. Foi possível observar o depósito de material hialino nos glomérulos e abundantes cilindros hialinos nos túbulos (Figura 3). O tipo de lesão pôde ser qualificada como glomerulonefrite membranoproliferativa evoluindo para esclerose e insuficiência renal com síndrome nefrótica. Todas as rãs estudadas apresentaram mineralização tubular multifocal. Estomago e intestino não apresentaram lesões.

A maioria das rãs estudadas mostrou grau variável de congestão no epicárdio com hemorragias e infiltração de macrófagos mononucleares e linfócitos (Figura 3). Em alguns corações estudados observaram-se granulomas com o mesmo padrão histológico já assinalado. O baço apresentou grau variável de congestão, hiperplasia linfocítica inespecífica, granulomas e necrose (Figura 3). Os pulmões revelaram diversos graus de infiltração mononuclear, congestão e hemorragias.

O estudo dos cortes histológicos corados pelo Gram revelou a presença de cocos Gram-positivos, em grau variável, associados às lesões observadas na coloração H&E (Figura 3). As colorações de PAS e Fite foram negativas para a presença de fungos e micobacterias, respectivamente. Também não foram identificados nos tecidos estudados corpúsculos de inclusão viral.
FIGURA 2 – (A) Fígado de rã sem sintomas, com alteração da estrutura trabecular e infiltração focal (setas) formada por leucócitos mononucleares. Estes aglomerados constituem a fase inicial dos granulomas. H&E 200x. (B) Corte de rim de rã sadia. Coloração de Gram. São observados cocos gram-positivos colonizando a região dos túbulos proximais, 1000x. (C) Fígado com degeneração gordurosa, predominantemente na região centro lobular. H&E, 100x. (D) Rim de rã sem sintomas apresentando forte infiltrado mononuclear e zonas de necrose. H&E, 200x.
FIGURA 3 – (A) Fígado de rã na fase aguda da doença mostrando abundante necrose e degeneração dos hepatócitos. Nota-se forte infiltração inflamatória predominantemente por mononucleares e formação de um granuloma (seta). H&E 400x. (B) Rim de rã na fase aguda com necrose e degeneração glomerular (setas), e infiltrado mononuclear. Observa-se material hialino nos túbulos proximais. H&E 100x.) (C) Glomérulode rã com sinais agudas, notam-se abundantes cocos Gram-positivos (setas). Coloração de Gram, 1000x. (D) Coração de rã na fase aguda mostrando epicardio com forte infiltrado mononuclear e formação de granuloma (seta). H&E 400x. (E) Baço de rã na fase aguda com áreas de necrose e formação de granulomas (seta), H&E, 200x. (F) Infiltrado inflamatório mononuclear e hemorragia nas meninges de rãs na fase crônica com sintomas nervosos. H&E, 200x.
3.4.3 Forma crônica

Os achados histopatológicos nestas rãs lembraram aqueles descritos para o quadro agudo, mas com maior gravidade. Em particular o estudo do sistema nervoso central mostrou diversos graus de infiltração mononuclear nas meninges com formação de granulomas (Figura 3). O encéfalo foi também afetado em algumas rãs, apresentando o mesmo infiltrado inflamatório e formação de granulomas. Na coloração de Gram realizada nas secções de tecidos, evidenciou-se a presença de cocos Gram-positivos. As colorações de PAS e Fite foram negativas.

3.5 Microbiologia

Verificou-se que 90% das rãs estudadas foram positivas para cocos Gram-positivos; 50% para Edwarsiella tarda e Escherichia coli.; 40% para Citrobacter spp.; 25% para Pseudomonas spp. e Proteus spp; e menos de 10% para Aeromonas hydrophyla, sempre associada a outros microorganismos. Dentre os cocos, foram isolados principalmente Streptococcus uberis, S. agalactie, S. faecalis, S. dysgalactiae e Enterococcus spp.

A análise das amostras de ração e da água de abastecimento do ranário não revelaram contaminação por Streptococcus. As condições microbiológicas da água eram compatíveis com os valores aceitados para o uso em aquicultura.

3.6 Reação em cadeia da polimerase (PCR)

Nas rãs estudadas, a pesquisa de ranavirus e S. iniae foi sempre negativa.

3.7 Microscopia eletrônica de transmissão

Não foram encontradas inclusões típicas de vírus e nem a presença de partículas virais, nas amostras estudadas.

3.8 SDS page das proteínas séricas totais

Estudos de eletroforese de proteínas sanguíneas revelaram grande depleção nos animais doentes quando comparados com aqueles sadios. O valor
média encontrado para rãs sadias foi de 2,56 g/dL, para rãs na fase aguda da doença foi de 0,725 g/dL, e 1,24 g/dL para animais na fase crônica.

3.9 Pesquisa do fungo *Batrachochytrium dendrobatidis*

Os resultados da pesquisa para fungos produtores da chytridiomicose foram negativos em todos os casos estudados.

3.10 Reprodução da doença

Não foi possível realizar a reprodução da doença em animais sadios com nenhuma das doses utilizadas, seja de bactérias puras ou em cultura mista. Também não foi possível reproduzir a doença injetando macerados de órgãos de rãs doentes com sintomatologia aguda.
4 DISCUSSÃO E CONCLUSÕES

Os resultados obtidos confirmaram que nos ranários comerciais de Goiás existe uma doença severa, com alta morbidade e mortalidade que acarretam significativos danos econômicos. Epizootiologicamente há maior prevalência nas épocas de temperaturas mais elevadas, sendo acometidas rãs em todas as fases do ciclo produtivo, principalmente animais em bom estado geral.

A sintomatologia foi inespecífica, cursando de forma subclínica, super aguda, aguda ou crônica. No quadro subclínico, os animais não apresentaram sintomas evidentes. Nos casos agudos, as rãs morriam rapidamente sem evidenciar sinais prévios ou se apresentaram letárgicas, ascíticas ou edematosas. Às vezes também eram evidentes sintomas nervosos. Um quadro específico super agudo e fatal assemelhou-se às descrições realizadas para o choque séptico em outras espécies animais incluindo o homem. (SALLES et al., 1999; MULLER-ALOUF et al., 2001). Algumas rãs evoluíram para quadro nervoso de caráter crônico caracterizado por lesões severas disseminadas, acometendo inclusive o sistema nervoso central, as quais eram responsáveis pela sintomatologia apresentada, ficando os animais debilitados e caquéticos. À necropsia e histopatologia, notava-se que as lesões predominaram no fígado e nos rins. O quadro inicial é de tipo necrótico-degenerativo, evoluindo para infiltrações por linfócitos mononucleares e formação de granulomas. Estas lesões apresentam-se associadas à presença de bactérias, principalmente cocos Gram-positivos.

Surtos de doenças com alta mortalidade têm sido comuns em todos os ranários. A presença de cocos Gram-positivos atuando isoladamente ou combinados com outras bactérias, tem sido observada em doenças septicêmicas nas rãs de criação e anfíbios na natureza.

GLORIOSO et al. (1974) obtiveram resultados semelhantes aos do presente trabalho ao analisarem bacteriologicamente amostras de rãs touro nos Estados Unidos. Os autores assinalaram que nessas rãs foram isoladas de cada indivíduo entre duas e oito espécies diferentes de bactérias, não existindo padrão definido nessas combinações. Também não foi isolado microrganismo em cultura.
pura. Fungos e vírus não foram isolados. Verifica-se, portanto, que existe concordância entre estes achados e os resultados do presente trabalho.

AMBROSKY et al. (1983) descreveram um surto de mortalidade em rãs de criação, por *Streptococcus spp* beta hemolíticos em *R. catesbeiana* do Estado de Pará, com epizootiologia e sintomas clínicos coincidentes com as observações deste trabalho. As principais lesões reportadas pelos autores foram a presença de septicemia, hepatite e esplenite necrotizante com hemorragias em ambos órgãos. Os autores também isolaram a bactéria do baço de rãs sadias, confirmando a hipótese de que os germes podem coabitar órgãos do animal sem produzir sinais evidentes de doença. A pesquisa de agentes virais também revelou resultados negativos. Os autores relacionaram o surto a fatores de estresse e densidade elevada que, associados às bactérias, determinaram a morte das rãs.

GUIMARAES et al. (1988) relataram quadros de infecções produzidas em *R. catesbeiana* dos Estados de Goiás e Pará, nos quais a mortalidade atingiu 80% da população em epizootias semelhantes aquelas do presente estudo. Foram isoladas diversas bactérias, incluindo *Edwarsiella tarda*, *Proteus vulgaris*, *Staphylococcus epidermidis* e *Streptococcus spp*, a partir de amostras de fígado, baço, rins, líquido peritoneal e ovários, com os estreptococos apresentando maior frequência. Os autores atribuíram o quadro ao estresse produzido por diversos fatores combinados, mas não determinaram a natureza ou origem da citada epizootia.

MAUEL et al. (2002) estudaram um surto com semelhantes características em *R. catesbeiana* de ranário do Estado da Geórgia nos Estados Unidos e identificaram os seguintes microrganismos: *A. hydrophila,*
Chryseobacterium meningosepticum, Chryseobacterium indolgenes, Edwarsiella tarda, Citrobacter freundii, Pseudomonas spp., e Streptococcus iniae. PASTERIS et al. (2006), estudando doenças em rãs de criação (R. catesbeiana) da Argentina, relataram a presença de Proteus vulgaris, Enterococcus faecalis, E. faecium, Staphylococcus aureus, e leveduras. Sendo que nestes estudos, os autores não realizaram a pesquisa de ranavírus ou chytrídeos, porém, a identificação simultânea de diversos microrganismos são concordantes com as observações da nossa pesquisa.

Todos os autores (AMBROSKY et al., 1983; GUIMARAES et al., 1988; HIPÓLITO et al., 1988; HIPÓLITO, 1995; FIORIO et al., 1997; HIPÓLITO, 1997; HIPÓLITO et al., 1997, 1999; MAZZONI, 2000a, b; MAUEL et al., 2002; PASTERIS et al., 2006), foram unânimes em indicar os estreptococos como agentes envolvidos em processos infecciosos, corroborando com os resultados obtidos neste estudo. A análise desses achados sugere maior suscetibilidade das rãs para estes microrganismos, que por sua vez, são habitantes naturais do ambiente.

Os estreptococos têm sido incriminados frequentemente como produtores de doenças em organismos aquáticos. O quadro de lesão estreptocócica descrita no presente trabalho coincide com aquele observado em criações de diversas espécies (ELDAR et al., 1994, 1995; TORANZO et al., 1995; CHANG & PLUMB, 1996; ELDAR & GHITTINO, 1999; EVANS et al., 2000; KLESIUS et al., 2000; ROMALDE et al., 2000; SHOEMAKER et al., 2000, 2001; CHANG et al., 2002; COLORN et al., 2002; SHELBY et al., 2002a, b; DUREMDEZ, 2004; KVITT & COLORN, 2004).

BERCOVIER et al. (1997) e ELDAR et al., (1997) descreveram a infecção estreptocócica como uma entidade mórbida produzida por bactérias dos gêneros Streptococcus, Lactococcus, Enterococcus e Vagococcus. Sugeriram que a estreptococose nos peixes deve ser considerada como um complexo de doenças semelhantes produzidas por diferentes gêneros e espécies de cocos Gram-positivos, que originam uma síndrome particular. Segundo aqueles autores, nas estreptococoses dos peixes, as medidas terapêuticas tradicionais são geralmente ineficazes, pois a ação dos antibióticos é de curta duração, sendo necessária à repetição dos tratamentos. BERCOVIER et al. (1997); ELDAR et al.
104

(1997); KLESIUS et al. (2000); SHELBY et al. (2002a) estabeleceram que as vacinas autógenas constituem a única medida aplicada com sucesso. Estas observações coincidem com os resultados obtidos na aplicação de medidas terapêuticas pelos ranicultores durante o curso da doença. Assim, a administração de antibiótico do grupo das penicilinas foi acompanhada da diminuição imediata nos índices de morbidade e mortalidade, mas uma semana após a suspensão da medicação, a enfermidade retomou os níveis iniciais.

Apesar das semelhanças entre a estreptococose dos peixes e a doença em rãs, torna-se importante assinalar que nos anfíbios não foi possível reproduzir os sintomas da enfermidade por meio da inoculação das bactérias isoladas, bem como o uso de vacinas não mostrou eficiência na prevenção ou controle da doença (dados não apresentados).

Não foi possível, nas condições deste estudo, determinar a causa primária que antecede a invasão dos tecidos pelos estreptococos. A ação dos ranavírus nas etapas iniciais dos gírinos (MAZZONI et al., dados não publicados) pode ter sido fator desencadeante, atuando isoladamente ou associado a fatores ambientais relacionados ao manejo e, principalmente, a uma alimentação não balanceada.

Tem sido discutido entre os ranicultores e técnicos envolvidos na pesquisa do setor, a qualidade das rações oferecidas às rãs. O elevado conteúdo em carboidratos e proteínas nestes alimentos pode, sem dúvidas, constituir-se na origem de alterações que levam à degeneração gordurosa do fígado, impedimento ou diminuição de suas funções metabólicas, e sobrecarga dos rins que acabam sendo lesados (CARNEVIA & MAZZONI, 1988; HIPÓLITO, 2001). As causas da degeneração gordurosa hepática citadas na bibliografia referem tanto a excessos de gordura no alimento como a carências dos aminoácidos colina e metionina na alimentação (KING & ALROY, 2000). A sintomatologia predominante de edemas e ascites associada à presença de lesões importantes nos rins e fígado estão em concordância com esta doença. A síndrome hepato-renal é descrita, detalhadamente, na bibliografia científica em outras espécies, fundamentalmente no homem (ROBBINS et al., 1996; GUINÉS, 2001). De igual forma, os sintomas nervosos observados frequentemente na fase aguda da doença, podem ter origem no quadro de encefalopatia hepática (COTTRAN, 1994),
no qual as toxinas não eliminadas pelo fígado chegam ao sistema nervoso central, lesando-o e originando sinais semelhantes aos descritos neste trabalho.

Os resultados da análise das proteínas totais do soro indicam, em geral, baixa concentração plasmática, quando comparados com os obtidos por COPPO (2003) em rãs de criação (R. catesbeiana) na Argentina. Este autor encontrou valores médios de 4,34 g/dL, quase o dobro do verificado no presente estudo para rãs sadias. Isto pode ser atribuído à lesão do fígado e rins dessas rãs, constatada na histopatologia. Este tipo de lesão provoca diminuição da função hepática bem como perda de proteínas pelo rim, constituindo a causa dos baixos valores encontrados. A grande diferença entre os valores obtidos para rãs que não apresentam sintomas da doença e rãs que apresentam o quadro agudo revela o severo comprometimento metabólico destas últimas, e corrobora com os achados na histopatologia e as observações clínicas de edemas e ascites.

Não foi possível fazer associação dos ranavírus com a doença estudada. Os resultados no PCR foram sempre negativos e as lesões na histopatologia foram diferentes daquelas descritas para estes agentes. Apesar dos órgãos mais afetados serem os mesmos acometidos pelos vírus, a lesão predominante foi a necrose e degeneração, com infiltração mononuclear e formação de granulomas. Não foram observadas lesões de picnose e cariorexia, nem as hemorragias na maioria dos órgãos, mencionadas nas infecções por iridovírus (WOLF et al., 1968; CUNNINGHAM et al., 1996; ZHANG et al., 2001) nem a lesão predominante nos túbulos proximais (ROBERT et al., 2005).

WOLF et al. (1968) trabalhando com R. catesbeiana nos Estados Unidos, isolaram um vírus poliédrico citoplasmático que chamaram de “vírus do edema do girino” ou “tadpole edema virus” (TEV). O agente foi isolado de todos os girinos e rãs adultas independentemente do seu estado sanitário. Os resultados do presente estudo diferem fundamentalmente destes achados pois o vírus não foi detectado pelas técnicas de PCR e microscopia eletrônica de transmissão nas rãs pós-metamorfose. Observaram-se sinais clínicos semelhantes aos descritos pelos autores, mas vale ressaltar que são inespecíficos e decorrentes do quadro de lesão renal e hepática, que predominaram em ambos dos estudos.
CUNNINGHAM et al. (1996) apresentaram dois tipos de síndrome em *Rana temporaria* coletadas em locais de mortalidades elevadas no Reino Unido. Uma síndrome hemorrágica que afeta a musculatura esquelética e no trato alimentar e sistema urinário e outra ulcerativa que acomete a pele e provoca necrose nos membros posteriores. Em alguns casos foram encontradas rãs com sinais comuns às duas síndromes. Os autores concluíram que o agente responsável da doença foi um iridovírus, entretanto neste estudo não foi detectada a presença do agente, nem o tipo de lesão descrita pelos autores.

ZHANG et al. (2001) reportaram casos de mortalidades acima de 90% em rãs de criação (*Rana grylio*) na China e atribuíram a causa a um ranavírus (*Rana grylio vírus, RGV*). A descrição dos sintomas inclui hemorragias petequiais na pele que evoluem para úlceras. As hemorragias tornam-se evidentes à medida que a doença avança no parênquima dos órgãos internos, fundamentalmente fígado e rins. À microscopia óptica, diversos graus de lesão, incluindo necrose, foram observados, resultando em destruição do tecido e formação de cavidades de diversos tamanhos no fígado e baço. No coração, foram observadas atrofia, fibrose e necrose. No intestino, verificou-se a presença de células epiteliais aumentadas de volume e numerosas células necróticas, além de sangue na cavidade. Nas septicemias estudadas no Brasil, não se observou presença de hemorragias petequiais, nem as úlceras referidas por esses autores. Ao microscópio, as lesões diferiram com as encontradas neste estudo principalmente em relação aos granulomas sem formação de cavidades decorrentes da necrose, além da ausência de lesões nas paredes do tubo digestivo.

GREEN et al. (2002), ao estudar 30 surtos em rãs silvestres nas fases pós-metamorfose e adultas, atribuíram aos iridovírus a etiologia de quatro deles e atribuindo os demais surtos a fungos, os quais não foram identificados em nosso estudo. Isto era o esperado tendo em vista que as condições de cativário favorecem o desenvolvimento e a ação bacteriana e, na natureza, as condições de alimentação e densidade populacionais são apropriadas.

WENG et al. (2002) reportaram na China surtos de “doença da barriga inchada” causados por iridovírus em rãs de criação da espécie *Rana tigrina rugulosa*. A presença do iridovírus foi confirmada por microscopia eletrônica e por
técnicas moleculares. À necropsia, foram observados hepatomegalia e esplenomegalia e, na histopatologia foi detectada necrose hepática e renal, sem presença de degeneração e de granulomas, a diferença dos resultados do presente estudo.

ROBERT et al. (2005) descreveram lesões produzidas pelo vírus FV3 em *Xenopus laevis* experimentalmente inoculadas. Os autores comprovaram o tropismo do agente pelo rim, observando que sinais de edemas e hemorragias foram os mais evidentes e tem íntima relação com lesão do órgão. Nos cortes corados pela H&E, os autores observaram lesões de necrose principalmente nos túbulos proximais e glomérulos. Nos túbulos distais foi observada apenas a presença de cilindros hialinos. No fígado, foi verificada necrose celular, mas em menor grau. Ao contrário do presente estudo, os autores não detectaram lesões degenerativas e granulomatosas.

GREER et al. (2005) estudaram cinco surtos de mortalidade em girinos de *Rana sylvatica* e rãs pós-metamorfose da espécie *Rana pipiens*, no Canadá. Baseados em observações a campo, na avaliação histopatológica e em técnicas moleculares, atribuíram aos ranavírus a causa dos surtos. Porém, relataram que resultados positivos foram obtidos na PCR para rãs sadias criadas em laboratório e ovos coletados em locais onde infecções por iridovírus haviam sido reportadas. A partir desses resultados, notou-se a importância da realização de diagnóstico diferencial consistente, devido à semelhança dos sinais clínicos e da preferência ou eleição de órgãos como o fígado e o rim. Os fungos envolvidos nas doenças de anfíbios já citadas, também não foram detectados.

A síndrome denominada de “perna vermelha” não foi observada em nenhuma das rãs quando a análise foi realizada com o animal ainda vivo. Quando as rãs foram encontradas mortas, ou moribundas, os sinais clássicos de eritema na região ventral do corpo e patas começaram a ser evidentes. Estes resultados são coincidentes com aqueles citados por GREEN et al. (2002) que estudando surtos em anfíbios dos Estados Unidos, não diagnosticaram *red leg*. São concordantes também quanto à constatação de que a maioria das mortalidades atribuídas à síndrome de perna vermelha refere-se a diagnósticos incompletos, nos quais a premissa básica de não realizar estudos microbiológicos em rãs em fases terminais ou mortas não foi cumprida, bem como, não foi
pesquisada a presença de vírus, nem realizadas as análises histopatológicas correspondentes. Assim, há que se concordar com a afirmação dos autores: “a perna vermelha é um diagnóstico erroneamente e excessivamente utilizado na medicina de anfíbios e na epizootiologia herpetológica”. Em função dos resultados obtidos e das afirmações de GIBBS et al.(1966) CUNNINGHAM et al. (1996) e GREEN et al. (2002) os autores do presente estudo apresentam a proposta de eliminar da nomenclatura científica o termo “perna vermelha” ou red leg, por considerá-lo uma fonte de confusão no que se refere à etiologia do surto, bem como por fazer referência a um evento que se apresenta em várias situações, associadas ou não com agentes infecciosos.

A lesão granulomatosa característica da doença descrita no presente estudo, tem sido associada à infecções estreptocócicas bem como de outras bactérias resistentes à fagocitose AGIUS & ROBERTS (2003). Os macrófagos uma vez que fagocitam agentes de elevada resistência são responsáveis pelo início de reações inflamatórias localizadas. O desenvolvimento daqueles microrganismos, com consequente reação imune, dá origem a lesões granulomatosas características das infecções crônicas.

Em determinadas situações, as bactérias coabitam os tecidos das rãs produzindo lesões sem sintomatologia evidente demonstrando que os anfíbios conseguem atingir condições de produção aceitáveis convivendo com uma certa contaminação bacteriana. Segundo MITCHELL (2003) e IICAB (2005) os estreptococos potencialmente patogênicos podem colonizar de forma assintomática, animais normais e humanos, requerendo ação de fatores desencadeantes para produzir sintomas evidentes. Sabe-se que o número de bactérias é limitado usualmente pelas defesas não-específicas. Algumas espécies chegam a produzir doenças quando estes mecanismos falham ou quando uma cepa nova aparece, seja pelo ganho de determinados genes de virulência ou pela presença de cápsulas polisacarídeas de proteção.

A morte das rãs é causada por septicemia associada ao comprometimento funcional do fígado e rins principalmente, mas outros órgãos como baço, e coração são afetados à medida que a doença avança. O quadro pode ser qualificado como “septicemia estreptocócica secundária”.
Observações a campo indicam que a utilização, pelos produtores, de penicilina na ração ou penicilina e estreptomicina injetável mostraram resultados imediatos na redução do aparecimento de novos casos, assim como da mortalidade, mas a ação destes antibióticos durou entre sete e 10 dias. Após esse período, a doença retomou aos níveis originais. Foi também observado que a aplicação de medidas de biossegurança básicas, comprovadamente imprescindíveis em outras criações com maior desenvolvimento (SOBESTIANSKY, 2002) revelaram-se efetivas. Um vazio sanitário de três meses, seguido de medidas de desinfecção adequadas controlaram a doença no ranário em estudo e também em outros ranários (VIANA, 2005). Esta observação sugere que, provavelmente, em função das modificações das condições ambientais, ocorrem mudanças que diminuem a quantidade de microrganismos presentes e controlam a doença.

Ficou demonstrado que o papel dos cocos Gram-positivos não pode ser descartado na evolução da doença e, portanto, devem ser levados em conta nos planos de controle sanitário dos ranários comerciais. Porém, a presença de diversas espécies sem a determinação de um patógeno permanente ou constante, indica o caráter secundário da infecção.

O curso insidioso, a ausência de um patógeno específico, a associação de diversas espécies bacterianas, a resposta imune de tipo crônico e a lesão degenerativo-necrótica encontrada nos principais órgãos de metabolismo, sugerem provável causa múltipla para a doença, decorrente da ação conjunta de fatores infecciosos, ambientais e alimentares. É provável que uma ação inicial dos ranavírus, identificada nos girinos, possa constituir a porta de entrada das bactérias.
REFERÊNCIAS

ENCONTRO NACIONAL DE RANICULTURA, 1988, Rio de Janeiro. Anais VI

76. MAZZONI, R. Diseases in farmed American bull frog (Rana catesbeiana Shaw, 1802) in Uruguay. In: GETTING THE JUMP! ON AMPHIBIAN DISEASE,

85. PASTERIS, S.; BUHLER, M.; NADER-MACIAS, M. Microbiological and histological studies of farmed-bullfrog (*Rana catesbeiana*) tissues displaying red-leg syndrome. **Aquaculture.** Amsterdam, v. 251, n. 1, p. 11-18, 2006

110. WENG, S.; HE, J.; WANG, X.; LU, L.; DENG, M.; CHAN, S-M. Outbreaks of an iridovirus disease in cultured tiger frog, Rana tigrina rugulosa, in southern

CAPÍTULO 5
PROCESSO INFECCIOSO SUPER AGUDO SEMELHANTE AO CHOQUE ENDOTÓXICO EM RÃS DE CRIAÇÃO (*Rana catesbeiana* Shaw, 1802).

RESUMO

Na realização de estudos de doenças septicêmicas em rãs de criação foi observado uma forma super aguda que acontece em 15 a 20% dos animais doentes. O objetivo do presente trabalho foi estudar as características particulares desta forma da infecção, mediante estudos clínicos e para-clínicos que envolveram amostragem de exemplares para necropsia, análises histopatológicas, microbiológicas, moleculares e de microscopia eletrônica de transmissão. Os sinais clínicos observados incluem modificações da postura normal, depressão, e diminuição da reação aos estímulos externos. As rãs morrem em curto período de tempo apresentando incoordenação, opistótomo e convulsões, permanecendo em quadro tetânico com os membros estendidos. À necropsia, foram observados aumento do tamanho do fígado e coloração anormal, geralmente cinzenta ou amarelada, baço pardo-escuro e aumentado de tamanho, rins e pulmões hemorrágicos e ascite leve com exsudato soro-hemorrágico. À histopatologia, observou-se um quadro característico de lesões produzidas por sepse generalizada. Fígado, rins, baço, coração, pulmão e cérebro foram afetados. Verificou-se nesses órgãos uma resposta inflamatória múltipla, necrose associada à presença de macrófagos e infiltração linfocitária. Granulomas bacterianos foram observados distribuídos no parênquima dos diversos órgãos. A alteração histopatológica mais frequente neste quadro foi o aparecimento de aglomerados basofílicos arredondados distribuídos na maioria dos órgãos afetados, correspondendo a cocos Gram-positivos. O quadro clínico super agudo, associado aos achados de necrópsia e histopatologia sugerem a ocorrência de um choque que, devido a quantidade e distribuição generalizada dos microrganismos, indicam origem séptica. Por tanto, a análise dos resultados do presente estudo permitem-nos concluir sobre a presença de uma síndrome semelhante à síndrome de choque endotóxico ou choque séptico em rãs de criação.

Palavras chave: Aqüicultura, choque, estreptococos, ranicultura.
ABSTRACT

During the study of septicemic diseases in farmed frogs, it was detected a particular syndrome characterized by super acute mortality affecting 15 to 20% of the sick population. Clinical signs included abnormal posture, depression, and low reaction to external stimuli. Frogs died in a very short time showing incoordination, opistotonous and convulsions with tetany, remaining with the four legs extended. Necropsy findings included hepatomegaly with abnormal color, generally grayish or yellowish, dark red and swollen spleen, hemorrhagic kidneys, strongly hemorrhagic lungs and slight ascites with serum-hemorrhagic exudate. Histopathologically, a septicemic pattern was observed. Liver, kidney, spleen, heart, lungs and brain showed a multiple inflammatory response with necroses in association with macrophage and lymphocytic infiltration. Bacterial granuloma were observed spread in all organs. The most frequent histopathological lesion were basophilic aggregates spotted through all affected organs. The super acute condition, associated with necropsy and histopathological findings suggested shock syndrome that, due to bacterial quantity and distribution indicated a septic origin. These results resembled the existence of a toxic shock syndrome or septic shock in farmed frogs, and indicate that this kind of disease could be an usual finding in other aquaculture species.

Key words: Frogs, septicemia, streptococci, shock
1 INTRODUÇÃO

Com os avanços nos conhecimentos sobre manejo e alimentação, a ranicultura transformou-se numa atividade intensiva, com altas densidades de população e estrita dependência de alimentos balanceados artificiais. Os métodos intensivos de cultivo favorecem o aparecimento de doenças que constituem ameaça à viabilidade técnica e econômica dos ranários e são considerados fatores que limitam o crescimento da atividade (NACE, 1974; AMBROSKY et al., 1983; GUIMARAES et al., 1988; CRAWSHAW, 1994; MAZZONI, 2000a; MAZZONI & CARNEVIA, 2000; ZHANG et al., 2001; MAZZONI, 2003).

No Brasil, conforme revisão realizada por HIPÓLITO (2002), a maioria dos trabalhos relativos ao assunto, foram comunicados efêmeros, não tendo continuidade no estudo do caso. Os diagnósticos concentraram-se exclusivamente na identificação de agentes parasitários e bacterianos, não sendo realizado acompanhamento dos surtos, no intuito de estabelecer o papel etiológico dos agentes detectados e de outros aspectos das doenças que permitam a elaboração de medidas de prevenção ou controle.

Trabalhos realizados com rãs de criação na China (*Rana grylio* e *Rana tigrina rugulosa*) identificaram a presença de vírus da família Iridoviridae gênero *Ranavirus* como produtores de doenças com elevada mortalidade e impacto econômico (ZHANG et al., 2001, 2006; WENG et al., 2002; ZHANG et al., 2006).

Nas rãs de ambientes naturais tem sido identificada uma doença emergente com alta mortalidade, produzida pelo fungo *Batrachochytrium dendrobatidis* (BERGER et al., 1998; BERGER et al., 1999; DASZAK et al., 1999; LONGCORE et al., 1999; SPEARE & BERGER, 2000; MAZZONI, 2000a, b; BERGER et al., 2002, GUAYASAMIN et al., 2002; MAZZONI et al., 2003; SPEARE, 2003; HANSELMANN et al., 2004; BLAUSTEIN & DOBSON, 2006).

O presente trabalho constitui parte de estudos realizados no Brasil com o intuito de aprofundar o conhecimento sobre as doenças das rãs de criação (*Rana catesbeiana* Shaw, 1802), principalmente aquelas com alta mortalidade, e consequentemente de maior impacto econômico.
As observações clínicas dos surtos acompanhados neste estudo, bem como daqueles citados na bibliografia sobre doenças de rãs, revelaram sintomatologia inespecífica e, portanto, insuficiente para conferir o diagnóstico.

Dentre as diversas formas clínicas observadas, constatou-se a presença de mortes súbitas de forma super aguda, já informadas pelos ranicultores (informação pessoal) e outros autores (NACE, 1974; GUIMARAES et al., 1988), mas, nunca estudado em forma isolada. Em função da importância apresentada por esta forma clínica propôs-se este estudo com o objetivo de conhecer as características etiológicas e fisiopatológicas envolvidas neste processo infeccioso super agudo. Para tanto, foram realizadas pesquisas dos agentes etiológicos, a epizootiologia das doenças, a sintomatologia clínica, a anatomia patológica macroscópica, a histopatologia, a bacteriologia convencional, e a virologia, sendo esta por meio do emprego de técnicas moleculares, cultura de células e a microscopia eletrônica de transmissão.
2 MATERIAL E MÉTODOS

O presente estudo foi realizado em um ranário de ciclo completo localizado no Estado de Goiás, no Município de Hidrolândia. As rãs, logo após a metamorfose, foram confinadas em baias de concreto localizadas em galpões fechados. Todas as baias possuíam piscina de cinco cm de profundidade ocupando 20% da superfície total. A água foi obtida a partir de uma represa de 20 hectares alimentada por várias nascentes.

As rãs foram alimentadas duas vezes por dia com ração extrusada apresentando 45% de proteína bruta. De forma periódica, as rãs foram submetidas a triagem para manter tamanhos uniformes e reduzir o canibalismo. A densidade foi mantida na faixa de 150 animais por m² durante a fase inicial, até alcançar 40 por m² na etapa de terminação.

2.1 Amostragem das rãs

Foram utilizadas 60 rãs com sinais típicos do quadro super agudo da doença. Os exemplares estudados foram coletados no momento prévio à morte ou durante o processo de convulsões e vômito decorrentes da apresentação super aguda da enfermidade. As rãs foram insensibilizadas por concussão craniana e sacrificadas por corte da medula nervosa cervical (AVMA, 1993).

2.2 Análise Histopatológica

Fragmentos de fígado, rins, baço, estomago, pulmões, coração e cérebro foram extraídos e preservados em formol tamponado a 10% (vol-vol) e processados segundo a rotina de estudos de histopatologia no laboratório de Histopatologia do Hospital das Clínicas da Universidade Federal de Goiás, utilizando as técnicas propostas por LUNA (1968). Os blocos parafinados foram seccionados em cortes de 4-5 µ e corados com hematoxilina-eosina (H&E) para as avaliações primárias das lesões. Adicionalmente, os cortes selecionados foram também corados pelo método de Gram para visualização de bactérias em geral, pelo método de Fite para detecção de micobacterias e coloração de PAS para visualização de fungos.
2.3 Reação em cadeia da polimerase (PCR)

Fragmentos de fígado, rim, baço e músculo foram preservados em etanol a 95% ou congelados a -20°C até processamento no laboratório de Biologia Molecular do Centro de Pesquisa em Alimentos da Escola de Veterinária da Universidade Federal de Goiás. A extração do DNA foi realizada a partir de porções de 50 mg utilizando o método do fenol/clorofórmio (SAMBROOK et al., 1989). Foram utilizados iniciadores direcionados a regiões conservadas no genoma dos iridovírus (Quadro 1). Para o gene que codifica a proteína imediata precoce (IE) ICP-18 utilizaram-se iniciadores propostos por GALLI et al. (2006), e para o gene que codifica a proteína MCP foram utilizados iniciadores localizados nas extremidades 5´e 3´ da seqüência de FV3 (TAN et al., 2004) sendo que o iniciador “forward” é original do presente trabalho e o “reverse” já utilizado por HYATT et al. (2000) segundo é apresentado no Quadro 1.

QUADRO 1 – Iniciadores utilizados para amplificação parcial do genoma de ranavirus, “bp” indica o comprimento do amplicon.

<table>
<thead>
<tr>
<th>Nome</th>
<th>Forward</th>
<th>Reverse</th>
<th>Produto (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP</td>
<td>ATGCTTTCTGTAACCTGGTTCA</td>
<td>AAAGACCCGTTTGCAGCAAAC (1)</td>
<td>1483</td>
</tr>
<tr>
<td>IE</td>
<td>ATGATCCAGAGCCTACCTGTGC (2)</td>
<td>AAATGTCCTAATCTATACACC (2)</td>
<td>479</td>
</tr>
</tbody>
</table>

(3) HYATT et al. (2000); (2) GALLI et al. (2006).

O mix utilizado para a amplificação com os diferentes iniciadores constituía-se de 2,5 µL 10x tampão de PCR [Tris-HCl 20 mM (pH 8.4), KCl 50 mM], dNTP 200 µM, 2,5 mM MgCl₂, 2.5 µM de cada iniciador, 1 U de Taq DNA Polymerase, 5 µL de DNA template e água MilliQ até completar 50 µL para cada reação. Os produtos de amplificação foram submetidos a corrida em gel de
agarose a 1%, corados com brometo de etídeo 0,5 µg/mL e visualizados em transiluminador de luz UV.

Foram também utilizados iniciadores direcionados à identificação da bactéria *Streptococcus iniae* aplicando a metodologia de PCR proposta por BERRIDGE et al. (1998). Os cocos Gram-positivos, independentemente do gênero foram purificados, sendo o DNA extraído pela metodologia do fenol/clorofórmio (SAMBROOK et al., 1989).

2.4 Análise Microbiológica

O sangue foi colhido assepticamente diretamente do coração das rãs vivas e foram preparados esfregaços que foram posteriormente corados com Giemsa. Uma vez sacrificados os exemplares foram submersos em solução de ácido peracético a 0,2%. Após abertura da pele e da cavidade celômica, fígado, rins, baço, pulmões, coração e cérebro foram extraídos assepticamente. As amostras foram processadas imediatamente no laboratório de bacteriologia do Centro de Pesquisa em Alimentos da Escola de Veterinária da Universidade Federal de Goiás, sendo inoculadas em caldos BHI (*Brain Heart Infussion Broth*), Casoy (*Tripticase Soy Broth*), Glicose Azide e Selenito-Cistina, segundo os métodos rotineiros (BRASIL, 2003). Todas as amostras foram incubadas a 30°C por 24-72 h. O período de 72 horas deveu-se ao crescimento lento de alguns estreptococos, e procurou-se de esta forma propiciar um tempo suficiente para o desenvolvimento, evitando a ocorrência de falsos negativos. Assim que foi observado crescimento bacteriano foram semeadas alíquotas em placas de ágar sangue contendo 5% de sangue desfibrinado de carneiro, e incubadas a 30°C, determinando-se as características hemolíticas e morfologia das colônias-UFC. As UFC isoladas, com diferente morfologia, foram selecionadas para coloração de Gram, observação em microscópio de contraste de fase, e identificação mediante provas bioquímicas complementares. Os cocos Gram-positivos foram estudados mediante provas bioquímicas complementares. As UFC identificadas primariamente pela bioquímica como estreptococos, foram enviadas para determinação da espécie ao *Aquatic Animal Health Research Laboratory* em Auburn - Alabama, nos Estados Unidos. As culturas foram processadas pelo
método de Identificação de ácidos graxos da membrana, FAME (Fatty Acid Methyl Ester).

Os bastonetes Gram-negativos foram incubados em placas de ágar McConkey e as UFC selecionadas inoculadas em tubos de TSI (Triple Sugar Iron Agar) para finalmente serem submetidas à bateria de testes bioquímicos para identificação da espécie (BRASIL, 2003).

Amostras de água e da ração foram analisadas periodicamente por técnicas microbiológicas convencionais para determinação de contaminação fecal (BRASIL, 2003) e presença de cocos Gram-positivos como descrito anteriormente.

2.5 Microscopia eletrônica de transmissão

As amostras foram processadas no laboratório de Microscopia Eletrônica do Instituto Biológico de São Paulo. O material analisado foi selecionado a partir de lesões identificadas nas lâminas da histopatologia. Uma vez delimitada a região suspeita, a mesma foi localizada no bloco parafinado e realizou-se corte de aproximadamente 1 mm de diâmetro. O Fragmento extraído foi desparafinado, reidratado e finalmente processado pela técnica de inclusão em resina, seguida de contratação positiva de cortes ultrafinos de acordo com os procedimentos usuais de inclusão em resina, baseando-se nos métodos de LUFT (1961) e GONZALES-SANTANDER (1969). Quando utilizou-se esta técnica, os fragmentos de órgãos foram fixados em glutaraldeído a 2,5% em tampão fosfato 0,1M e pH 7,0, pós-fixados em tetróxido de ósmio a 2% em tampão fosfato 0,2M, pH 7,0, corados por acetato de uranila a 0,5%, desidratados em série cetônica crescente (50 a 100%) e incluídos em resina Spurr. Após ultra seccionamento dos blocos, os cortes ultrafinos obtidos são corados positivamente pelo tratamento seqüencial de acetato de uranila (WATSON, 1958) e citrato de chumbo (REINOLDS, 1963), antes de serem observados ao microscópio eletrônico de transmissão Philips EM 208.

2.6 Pesquisa do fungo Batrachochytrium dendrobatidis

A pele das rãs foi amostrada realizando raspagens nas regiões ventrais do abdome e dos membros posteriores com bisturi esterilizado. O
material obtido foi colocado sobre uma lâmina de vidro, corado com uma mistura de KOH 10% e Azul de Algodão em proporções de 50:50 (vol-vol) e coberto por uma lamínula para observação em microscópio óptico, segundo a descrição de MAZZONI et al. (2003).
3 RESULTADOS

Os resultados da epizootiologia, microbiologia, PCR e microscopia eletrônica de transmissão não diferem daqueles descritos para rãs septicêmicas em trabalhos anteriores (MAZZONI et al. dados não publicados) pelos autores.

Rãs doentes e mortas foram detectadas em todas as etapas do ciclo de vida não sendo encontrado relação com o manejo, tipo de alimentação ou localização dentro do ranário. Observou-se que entre 15 e 20% dos animais afetados evoluíram para um quadro super agudo. Esse quadro coexiste no mesmo ranário, inclusive nas mesmas baias, com outros quadros da doença (MAZZONI et al., dados não publicados). Não foram observados sinais premonitórios que pudessem indicar que uma determinada rã seria afetada.

Os sinais clínicos incluíram: modificações da postura normal, depressão, e diminuição da reação aos estímulos externos. As rãs apresentaram ainda incordenação, opistótomo e convulsões, permanecendo em quadro tetânico com os membros estendidos (Figura 1).

Às vezes, foi observado vômito sanguinolento no momento da morte e emissão de um som forte e agudo. Não foram observadas hemorragias na pele e nem ulcerações. Quando as rãs foram colhidas imediatamente após a morte, não se observou nenhuma coloração vermelha na pele. Torna-se imperativo relatar que o aparecimento super agudo dos sintomas e o conseqüente óbito dos animais pode acontecer em período muito curto, de cerca de 30 minutos. Verificou-se que as rãs se alimentavam até o aparecimento dos sinais clínicos, fato comprovado à
necropsia. O quadro que levou os animais à morte lembrou as descrições realizadas em outras espécies animais e no homem para o choque séptico.

3.1 Necrópsia

As rãs doentes mostraram diversos graus de lesões nos órgãos internos, mas sem um padrão definido. As lesões de maior frequência foram: aumento do volume e coloração anormal do fígado, geralmente cinzenta ou amarelada, baço aumentado de volume e com coloração pardo-escura além de rins hemorrágicos. Às vezes, observaram-se pulmões fortemente hemorrágicos e ascite leve contendo exsudato sero-hemorrágico.

A maioria dos animais apresentou alimento no tubo digestivo, incluindo o estômago e o duodeno, enquanto o corpo adiposo apresentava-se com características normais.

3.2 Histopatologia

Foi observado um quadro de lesões inflamatórias e vasculares produzidas pela sepse na maioria das rãs afetando o fígado, rins, baço, coração, pulmão e cérebro.

Foram observados resposta inflamatória múltipla, localizada nas serosas das vísceras bem como granulomas bacterianos distribuídos no parênquima dos diversos órgãos. Também ocorreram áreas de necrose associadas à presença de macrófagos e grande infiltração linfocitária na maioria dos tecidos.

A alteração mais frequente neste quadro foi o aparecimento de focos basófilos arredondados distribuídos na maioria dos órgãos afetados, correspondendo a aglomerados de bactérias, provavelmente cocos (Figura 2).

Um achado comum foi a esteatose hepática com perda da estrutura normal do tecido e necrose. Os rins apresentaram-se muito afetados, com infiltração mononuclear, necrose glomerular e tubular, congestão, granulomas e abundantes cilindros hialinos nos túbulos, bem como mineralização tubular multifocal. Os pulmões revelaram diversos graus de infiltração mononuclear, congestão e hemorragias.
FIGURA 2 – Rã adulta. Focos basofílicos correspondendo a aglomerados de cocos. (A) Fígado 200X; (B) Baço 200X; (C) Coração 400X; (D) Rim 200X. Coloração H&E.

As rãs estudadas mostraram grau variável de congestão no epicárdio com hemorragias e infiltração de monocitos macrófagos e linfócitos. No coração observaram-se granulomas com o mesmo padrão histológico já assinalado nos outros tecidos, assim como abundantes bactérias infiltrando o miocárdio e o epicárdio. No baço notou-se grau variável de congestão, hiperplasia linfócita inespecífica, granulomas e necrose, sempre associados à presença bacteriana.
Figura 3 - Aglomerado de cocos gram-positivos no miocárdio (A), e em rim de rãs (B). Coloração de Gram, 1000X.

FIGURA 4 - Esfregaço de sangue cardíaco corado pelo Giemsa. Observam-se abundantes cocos isolados ou em cadeias na superfície das hemáceas (seta), assim como em um leucócito (ponta de seta), 1000x.

A coloração de Gram revelou a presença de grandes aglomerados de cocos Gram-positivos associados às lesões observadas na H&E (Figura 3). Esses aglomerados de bactérias foram identificados na intimidade de todos os tecidos dos órgãos e vísceras examinados. Não foi observada reação inflamatória circundando esses aglomerados bacterianos. A pesquisa de corpúsculos de inclusão viral foi negativa.
3.3 Microbiologia

Amostras de sangue colhido diretamente do coração das rãs, coradas pelo método de Giemsa revelaram a presença de abundantes cocos, muitas vezes em cadeias aderidos às paredes das hemáceas, bem como no interior de células de defesa (Figura 4).

3.4 Reação em cadeia da polimerase (PCR)

Nas rãs estudadas, a pesquisa de ranavírus e *S. iniae* foi negativa.

3.5 Microscopia eletrônica de transmissão

Não foram encontradas inclusões típicas de vírus, nem presença de partículas virais.

3.6 Pesquisa do fungo *Batrachochytrium dendrobatidis*

As pesquisas do fungo foram negativas em todos os animais estudados.
4 DISCUSSÃO E CONCLUSÕES

A análise do conjunto de resultados permite evidenciar a presença de um quadro particular, do tipo septicêmico e super agudo, mediado principalmente pelos estreptococos, que após um período variável de infecção sub-clínica, conseguem proliferar em quantidades muito elevadas que rapidamente levam a morte.

As septicemias têm sido reportadas como a causa mais importante de mortalidade em anfíbios, sendo freqüente o achado de animais mortos sem sintomas premonitórios (CRAWSHAW, 1994). Este mesmo autor assinala que os microrganismos normais do meio ambiente podem tornar-se patogênicos quando os anfíbios são submetidos a condições de estresse, sendo que a sintomatologia observada não depende do tipo de microrganismo envolvido. Os resultados das pesquisas realizadas confirmaram estas observações.

Apesar da importância das septicemias nos anfíbios, o risco de isolar bactérias oportunistas que entram no organismo submetido a condições de choque e colapso generalizado é elevado (NACE, 1974). O autor recomenda utilizar amostras para processamento microbiológico oriundas de rãs que sobreviveram pelo menos oito horas após a colheita. As observações do citado trabalho indicaram que os resultados da bacteriologia para este quadro clínico não são de completa validade.

Apesar dessas considerações, os estudos microbiológicos revelaram a constante presença de cocos Gram-positivos. À histopatologia, as quantidades elevadas destas bactérias, formando verdadeiros aglomerados no parênquima dos órgãos, indicam o papel fundamental das mesmas no quadro. É importante ressaltar que estes microrganismos foram observados nos estágios prévios da doença, em amostras obtidas de rãs sem sinais evidentes, assim como em rãs com sintomatologia aguda (MAZZONI et al., dados não publicados). Isto sugere que estas bactérias não pertencem aos invasores oportunistas. Esses cocos foram detectados nos cortes de tecidos e nos esfregaços sanguíneos, podendo o quadro ser nomeado de septicemia estreptocócica.
Quando os tecidos foram submetidos a análises bacteriológicas de rotina, outras bactérias principalmente bastonetes Gram-negativos também foram identificadas, mas provavelmente pertencem ao grupo de invasores secundários.

Septicemias por estreptococos ocorrem de forma esporádica ou epizoótica em populações selvagens ou de criação em grande número de espécies aquáticas (ROMALDE et al., 2000; TORANZO et al., 2005).

Nas rãs, diversos autores (GLORIOSO et al., 1974; AMBROSKY et al., 1983, GUIMARAES et al., 1988) obtiveram na bacteriologia, resultados semelhantes aos do presente trabalho.

Mortalidades de anfíbios foram estudadas em relação a surtos na natureza (CUNNINGHAM et al., 1996; BERGER et al., 1998; GREEN et al., 2002) sendo identificados além de diversos grupos de bactérias, agentes virais e fungos. No presente estudo, não foi possível incriminar esses patógenos como responsáveis diretos pela mortalidade.

Os estreptococos potencialmente patogênicos podem ser albergados de forma assintomática por animais normais e humanos. O número de bactérias é limitado usualmente pelas defesas não específicas, requerendo a ação de fatores desencadeantes para agir e produzir sintomas evidentes. Algumas espécies chegam a produzir doenças quando estes mecanismos falham ou quando uma cepa nova ou virulenta aparece (MITCHELL, 2003; IICAB, 2005).

As características do quadro clínico super agudo, de duração muito curta desde o aparecimento dos sintomas até a morte, associadas aos achados de necropsia e à histopatologia sugerem a ocorrência de um choque séptico, devido à quantidade e distribuição generalizada dos microrganismos.

Quadros de choque foram observados em estágios terminais das doenças septicêmicas nos anfíbios com iguais características clínicas às assinaladas no presente estudo. (NACE, 1974).

Choque séptico ou síndrome de choque tóxico (TSS) é um quadro amplamente conhecido no homem, caracterizado pelo rápido início da doença com febre, hipotensão, vômitos, diarréia e eventualmente falha em múltiplos órgãos (SALLES et al., 1999; WHITE, 2000; MULLER-ALOUF et al., 2001). É uma condição muito grave e quase sempre fatal se não tratada de imediato, e ocorre quando uma infecção generalizada determina diminuição do fluxo sanguíneo e

Apesar de a patogênese da síndrome não ser ainda bem conhecida, a TSS é produzida por superantígenos pertencentes à família das toxinas pirogênicas bacterianas, principalmente de *Staphylococcus aureus* e *Streptococcus pyogenes* e outros estreptococos do grupo A (GAS) de Lancefield (SCHLIEVERT, 1993). *S. pyogenes* e GAS foram considerados os produtores de uma síndrome específica e diferente, chamada síndrome semelhante ao choque tóxico [toxic shock like syndrome] (TSLS) com os mesmos sintomas, mas com a adição de uma necrose severa dos tecidos (BOHACH et al., 1990; STEVENS, 1995). As causas do quadro são exotoxinas pirogênicas de três sorotipos (A, B e C) e um superantígeno estreptocócico (SSA). Existe super estimulação dos linfócitos T e das células apresentadoras de antígenos mediados pelas toxinas, que determinam liberação de grandes quantidades de citocinas, desencadeando uma cascata de respostas inflamatórias que leva ao aparecimento da síndrome (SALLES et al., 1999; MULLER-ALOUF et al., 2001). O envolvimento de bacteriófagos na difusão dos genes codificadores das toxinas produtoras de TSLS têm sido também demonstrado (KAPUR et al., 1992).

As frações lipídicas dos lipopolisacarídeos da parede celular das enterobactérias foram também incriminadas na origem da síndrome (THE MERCK VETERINARY MANUAL, 2005). Porém, não foram detectadas quantidades destes microrganismos que pudessem evidenciar o envolvimento deles como causa principal do choque. Entretanto, o papel destas bactérias não pode ser descartado totalmente.

Trabalhos desenvolvidos nas últimas décadas têm revelado que outros germes estão também envolvidos na produção da síndrome. KORMAN et al.
(2004) observaram estes quadros de choque associados ao *Streptococcus equi* subespécie *zooepidemicus* pertencente ao grupo C de Lancefield. O microorganismo não possui nenhum dos genes conhecidos como produtor de super antígenos GAS, mas mostrou evidencias de sua produção. *S. canis* e *S. equi* subespécie *zooepidemicus* têm sido isolados de cães com TSLS. Os sintomas observados foram, entre outros, vômitos, estado de choque, debilidade e depressão extremas, convulsões, dores intensas e hemorragias espontâneas levando a epistaxe e a esputos sanguinolentos. Os suínos albergaram com frequência o *S. suis*, sem sintomas, mas cepas virulentas podem causar doenças severas com sintomas de labirintite, otite média e interna que levam a disfunções vestibulares, meningite com tremores, incordenação, convulsões e opistótomo.

O conjunto dos resultados obtidos permite-nos evidenciar a presença de um quadro particular do tipo septicêmico e super agudo em rãs doentes.

O vírus do gênero *Ranavirus* foi descartado como produtor do quadro, devido à ausência de resultados positivos na PCR, assim como na microscopia eletrônica de transmissão. Foi também descartado o papel do fungo *B. dendrobatidis*, pois não foi possível identificá-lo nos estudos realizados.

Os achados do presente trabalho indicam a presença de uma síndrome semelhante ao TSS ou TSLS em rãs de criação, levantando a suspeita de que este tipo de síndrome pode ser comum também em outras espécies empregadas à aquicultura. A observação de quadros de choque séptico em animais pecilotérmicos reportada neste trabalho, requer novos estudos na procura de maiores conhecimentos relacionados à patogênese e aos diversos mecanismos envolvidos no aparecimento do quadro.
REFERÊNCIAS

CAPITULO 6
CONSIDERAÇÕES FINAIS

Foi caracterizada pela primeira vez em rãs de criação do Brasil, uma doença específica que acomete girinos de até 30 dias de idade, cujo agente etiológico é um vírus da Família Iridoviridae, gênero Ranavirus. Clinicamente foram observados girinos com abdome aumentado de tamanho, com edemas e ascite, assim como girinos finos ou emaciados. Revelaram lesão localizada principalmente no fígado e nos rins, com destruição quase completa do parênquima. Nenhum agente bacteriano pode ser incriminado na etiologia da enfermidade. A presença constante nos resultados da PCR de um vírus do gênero Ranavirus, associada aos achados na histopatologia e na microscopia eletrônica de transmissão, confirmaram o papel fundamental deste microrganismo nesta enfermidade.

Estudos de epidemiologia molecular realizados permitem incluir o vírus detectado dentro do gênero Ranavirus. Observou-se homologia de quase 100% nos setores do genoma estudado com aqueles do Frog Virus 3, o que indica sua possível introdução com as rãs importadas da América do Norte.

Nas rãs, foi caracterizado quadro septicêmico com sintomatologia inespecífica, cursando de forma super aguda, aguda ou crônica. Nas fases agudas predominam sintomas como letargia, apatia, edemas e ascite sendo que, às vezes, as rãs apresentam sintomas nervosos. À histopatologia e microbiologia o quadro comporta-se de forma semelhante àquela observada nos girinos na pré-metamorfose. A morte é conseqüência da septicemia associada ao
comprometimento funcional do fígado e rins, principalmente. Na fase crônica as rãs apresentam-se emaciadas e com posturas anormais sugestivas de lesões nervosas.

Não foi possível reproduzir a doença injetando as bactérias isoladas a partir de animais com sintomas agudos, assim como não foi isolado de forma constante e permanente um único microrganismo. Vírus e fungos não foram associados aos surtos estudados.

A doença observada em girinos na pré-metamorfose e nas rãs, pode ser considerada como uma "septicemia estreptocócica secundária". As bactérias coabitam inicialmente os tecidos do animal, produzindo lesões sem sintomatologia evidente. Fatores individuais influenciados seguramente pelas condições ambientais e de manejo determinam a evolução a desenvolver-se em cada animal. A presença de diversas espécies sem determinação de um patógeno permanente ou constante indica o caráter secundário da infecção. Porém, o papel dos cocos não pode ser descartado na evolução da doença e, portanto, devem ser levados em conta nos planos de controle sanitário dos ranários comerciais. Não foi possível, nas condições deste estudo, determinar a causa primária que antecede a invasão dos tecidos pelos estreptococos. O papel primário dos vírus detectados nas primeiras semanas de vida pode ter sido fator desencadeante, favorecendo a invasão bacteriana observada em quadros de animais mais velhos.

A síndrome denominada de "perna vermelha" não foi observada em nenhuma das rãs estudadas. Os autores do presente estudo propõem a eliminação da terminologia científica do termo "perna vermelha" ou "red leg", por considerá-lo fonte de confusão quanto à etiologia do surto, bem como por fazer referência a evento que se apresenta em numerosas condições, associadas ou não com agentes infecciosos.

Os achados do presente trabalho sugerem a presença de uma síndrome semelhante ao choque séptico em rãs de criação, levantando a suspeita de que esta entidade possa ser também comum em outras espécies empregadas na aquicultura.

Observações a campo indicam que a aplicação de medidas de biossegurança básicas, comprovadamente imprescindíveis em outras criações
com maior desenvolvimento revelaram-se efetivas. Um vazio sanitário de três meses, seguido de medidas de desinfecção adequadas controlaram a doença no ranário em estudo e também em outros ranários.

O fungo *Batrachochytrium dendrobatidis*, agente produtor da chytridiomicose, não foi identificado nas rãs estudadas, não sendo, portanto, portanto incriminado como responsável nos surtos estudados. Também não foram observados outros fungos incriminados como causadores de doenças de anfíbios.